Skip to content

Nanobubbles

Gas nanobubbles formed at solid/liquid interfaces have received significant attention during the past decade due to their remarkable properties. We have developed an electrochemical approach for investigating the formation and properties of a single nanobubble of H2 with a radius between 5 and 50 nm. To create a H2 nanobubble, a Pt nanodisk electrode, shrouded in a glass sheath, is used to reduce H+ in a concentrated acid solution, creating a supersaturated solution of H2 adjacent to the electrode surface. As the electrode potential is scanned towards negative potentials, the current arising from H2 generation increases exponentially and then suddenly decreases to near background levels, signaling a liquid-to-gas phase transformation associated with the formation of a single nanobubble at the electrode surface. The nanobubble experiments reveal the nucleation mechanism of single nanobubble at the interface, as well as provide insight into the structure and chemical dynamics of electrochemical three-phase solid/liquid/gas boundaries

The dynamic steady state of an electrochemically generated nanobubble

Selected Publications:

Effect of Nonuniform Mass Transport on Nanobubble Nucleation at Individual Pt Nanoparticles
N. S. Georgescu, D. A. Robinson, and H. S. White
J. Phys. Chem. C, 2021, 125, 36, 19724–19732

Visualization and Quantification of Electrochemical H2 Bubble Nucleation at Pt, Au, and MoS2 Substrates
Y. Liu, C. Jin, Y. Liu, K. H. Ruiz, H. Ren, Y. Fan, H. S. White, and Q. Chen
ACS Sens. 2021, 6, 2, 355–363

Electrochemical Generation of Individual Nanobubbles Comprising H2, D2, and HD
Y. Qiu, H. Ren, M. A. Edwards, R. Gao, K. Barman, and H. S. White
Langmuir, 2020, 36, 22, 6073–6078

Nitrogen Bubbles at Pt Nanoelectrodes in Non-Aqueous Medium-Oscillating Behavior and Geometry of Critical Nuclei
Q. Chen, Y. Liu, M. A. Edwards, Y. Liu, and H. S. White
Anal. Chem. 2020. 92, 9, 6408-6414

Electrochemically Controlled Nucleation of Single CO2 Nanobubbles via Formate Oxidation at Pt Nanoelectrodes
H. Ren, M. A. Edwards, Y. Wang, H. S. White 
J. Phys. Chem. Lett. 2020.11, 4, 1291-1296.

Voltammetric Determination of the Stochastic Formation Rate and Geometry of Individual H2,N2, and O2Bubble Nuclei
M. A. Edwards, H. S. White, H. Ren
ACS Nano. 2019. 13, 6, 6330-6340

The Nucleation Rate of Single O2 Nanobubbles at Pt Electrodes
Álvaro Moreno SotoSean R. GermanHang RenDevaraj van der Meer, Detlef LohseMartin A. Edwards, and Henry S. White
Langmuir, 2018, 34 (25), pp 7309–7318

Critical Nuclei Size, Rate, and Activation Energy of H2 Gas Nucleation
Sean R. GermanMartin A. EdwardsHang Ren, and Henry S. White
J. Am. Chem. Soc., 2018140 (11), pp 4047–4053

Electrochemical Generation of Individual O2 Nanobubbles via H2O2 Oxidation
H. Ren, S. R. German, M. A. Edwards, Q. Chen, and H. S. White
J. Phys. Chem. Lett., 2017, 8, 2450-2454.

The dynamic steady state of an electrochemically generated nanobubble
Y. Liu, M. A. Edwards, S. R. German, Q. Chen, and H. S. White
Langmuir,  2017, 33 (8), 1845–1853.

Laplace Pressure of Individual H2 Nanobubbles from Pressure-Addition Electrochemistry
S. R. German, M. A. Edwards, Q. Chen, and H. S. White 
Nano Lett., 2016, 16 (10), 6691–6694.

Electrochemical Nucleation of Stable N2 Nanobubbles at Pt Nanoelectrodes
Q. Chen, H. S. Wiedenroth, S. R. German, and H. S. White
J. Am. Chem. Soc., 2015, 137 (37), 12064–12069.

Electrochemical generation of a hydrogen bubble at a recessed platinum nanopore electrode
Q. Chen, L. Luo, and H. S. White
Langmuir, 2015, 31(15), 4573-4581.

Electrochemical Measurements of Single H2 Nanobubble Nucleation and Stability at Pt Nanoelectrodes
Q. Chen, L. Luo, H. Faraji, S. W. Feldberg, and H. S. White
J. Phys. Chem. Lett. , 2014, 5(20), 3539-3544.

Electrogeneration of Single Nanobubbles at Sub-50-nm-Radius Platinum Nanodisk Electrodes
L. Luo and H. S. White
Langmuir, 2013, 29(35), 11169-11175.

Last Updated: 1/10/22