Skip to content

Peter B. Armentrout

Jennifer S. Shumaker-Parry PHYSICAL & ANALYTICAL CHEMISTRY

Distinguished Professor

Henry Eyring Presidential Endowed Chair of Chemistry

B.S. Case Western Reserve University, 1975
Ph.D. California Institute of Technology, 1980
Postdoctoral, Bell Labs, 1981

 
Phone: (801) 581-7885
Office: 3402 TBBC
Email: armentrout@chemistry.utah.edu

Armentrout Research Group Site

Activities & Awards

  • Presidential Young Investigator, National Science Foundation, 1984-89
  • Alfred P. Sloan Research Fellow, 1986-1990
  • Camille and Henry Dreyfus Teacher-Scholar, 1987-1992
  • Fellow, AAAS, 1992; APS, 1994; JSPS, 1999
  • Buck-Whitney Award, ACS Eastern New York Section, 1993
  • University of Utah Distinguished Research Award, 1994
  • Mack Memorial Award Lecturer, Dept. of Chem., Ohio State University, 1997
  • Biemann Medal, Am. Soc. Mass Spectrometry, 2001
  • Utah Award of Chemistry, American Chemical Society, 2002
  • Cannon Fellow, Chemistry Department, University of Utah, 2003-present
  • Phi Kappa Phi Honor Society, 2004
  • Outstanding Alumnus of the Year, Dept. Chem., Case Western Reserve University, 2004
  • Field and Franklin Award in Mass Spectrometry, American Chemical Society, 2009
  • U of U Rosenblatt Prize for Excellence, 2011
  • Editorial Board: current, Int. J. Mass Spectrom., formerly, J. Am. Chem. Soc., J. Chem. Phys., J. Phys. Chem., Organometallics, J. Am. Soc. Mass Spectrom.; J. Cluster Science
  • Governor's Medal for Science and Technology Award, Utah, 2010
  • R. W. Parry Teaching Award, Department of Chemistry, University of Utah, 2011
  • Morino Lectureship, Morino Foundation of Japan and Kobe University, Japan, 2011

  • Honoree of Special Issue of International Journal of Mass Spectrometry, Vol. 330-332, 2012

  • Honoree of Special Issue of Journal of Physical Chemistry A, Vol. 117, 2013

  • Ron Hites Award, American Society of Mass Spectrometry, 2018
  • John B. Fenn Award for a Distingueshed Contribution in Mass Spectrometry, American Society of Mass Spectrometry, 2021

Short Biography – Peter B. Armentrout

 

Professor Armentrout was born in Dayton, Ohio on March 13, 1953. He received a B.S. degree with highest honors in 1975 from Case Western Reserve University, Cleveland, Ohio. While at Case, Prof. Armentrout conducted research with Prof. Rob Dunbar on photodissociation spectroscopy of molecular ions which led to his interest in ion-molecule chemistry. After bicycling to California during the summer of 1975, he joined Prof. Jack Beauchamp at Caltech where he was awarded the Blanche A. Mowrer Memorial Fellowship. At Caltech, he constructed an ion beam apparatus designed to study the hyperthermal reactivity of atomic uranium and other metal ions; work which comprised his Ph.D. thesis, awarded in 1980. That January, Prof. Armentrout became a postdoctoral member of staff at Bell Labs in Murray Hill, New Jersey, working with Dr. Robert S. Freund. There he studied electron impact ionization of metastable atoms and molecules.

In July of 1981, Prof. Armentrout became an assistant professor at the University of California at Berkeley. He initiated a program which has come to study a wide spectrum of chemistries (primarily of transition metal species) by using ion-beam mass spectrometry. While at Berkeley, he was awarded a Camille and Henry Dreyfus Grant for Newly Appointed Faculty in Chemistry (1981), a NSF Presidential Young Investigator Award in its inception year (1984), and an Alfred P. Sloan Research Fellowship (1986). In 1987, he joined the faculty at the University of Utah as an associate professor where he was awarded a Camille and Henry Dreyfus Teacher-Scholar Grant (1987). In 1989, he was promoted to full professor. He has been recognized at Utah with an Outstanding Undergraduate Teaching Award from the Chemistry Department (1989) and the University-wide Distinguished Research Award (1994). He was the recipient of the Buck-Whitney Award from the American Chemical Society Eastern New York Section (1993) and in 1997, the graduate students at the Ohio State University Department of Chemistry selected Professor Armentrout as their Mack Memorial Award Lecturer. In 1998, he was promoted to Distinguished Professor of Chemistry and named Cannon Fellow in 2003, and the Henry Eyring Presidential Endowed Chair in Chemistry in 2018. He received the Biemann Medal from the American Society of Mass Spectrometry in 2001,  the Utah Award of Chemistry from the Utah Sections of the American Chemical Society in 2003, the Field and Franklin Award for Outstanding Achievement in Mass Spectrometry from the American Chemical Society in 2009, the Governor's Medal for Science and Technology Award from the State of Utah in 2010, Rosenblatt Prize for Excellence from the University of Utah in 2011, the Ron Hites Award from the American Society of Mass Spectrometry in 2018, and the John B. Fenn Award for a Distinguished Contribution in Mass Spectrometry from the American Society of Mass Spectrometry in 2021. In 2011, his teaching was recognized by the R. W. Parry Teaching Award given by the Department of Chemistry, University of Utah.

Professor Armentrout is a member of the editorial advisory boards of the Journal of the American Society of Mass Spectrometry and the International Journal of Mass Spectrometry and Ion Processes, and formerly of the Journal of the American Chemical Society, Journal of Physical Chemistry, Journal of Chemical Physics, Organometallics, and the Journal of Cluster Science (charter member). He is a member of the American Chemical Society, American Physical Society (fellow), American Society for Mass Spectrometry, and the American Association for the Advancement of Science (fellow). He presently has over 560 research publications that have appeared in the literature. Forty-four students have received their Ph.D.s with Professor Armentrout.

In 1983, he married his high school sweetheart, Mary Ann White. They have three children, Matthew, Patricia, and Erin, who have four grandchildren, Evie, Leo, Annabelle and Elliot.

Research Interests

Our research provides a detailed understanding of the thermochemistry, kinetics, and dynamics of simple and complex chemical reactions. Our group seeks to understand, from a fundamental viewpoint, reactions involved in biological chemistry, catalysis, surface chemistry, organometallic chemistry, and plasma chemistry. Techniques involved include mass spectrometry, ion beams, molecular beams, laser spectroscopy, and ab initio theory.

plots

Chemistry of state-selected atomic metal ions. Transition metals have an abundance of low-lying electronic states that we have shown for 1st-row metals can have very different reactivity. We have recently developed a novel ion mobility source that should permit such studies to be extended to the 2nd- and 3rd- row metals where spin-orbit interactions become important.

Chemistry of unsaturated organometallic complexes. By varying the number and types of ligands attached to metal ions, we study periodic trends, the influence of ligand substitution, and the effects of metal oxidation state on reactivity. These studies provide quantitative thermodynamic data and qualitative electronic information on unsaturated organometallic complexes: the key intermediates in homogeneous catalysis.

Chemistry of solvated ions. Gas-phase solvated ions are important species in the atmosphere and in aerosols and provide a bridge between phenomena in condensed phases and the gas phase. Detailed experiments on such species yield quantitative information that cannot be obtained easily in the condensed phase.

Thermochemistry of metal ions and protons interacting with biological molecules. Our work includes some of the first measurements of the binding energies of Li+, Na+ K+, and Rb+ with the nucleic acid bases, amino acids, and small peptides. The thermochemistry of protonated peptides is also being examined.

Environmental chemistry. A long standing interest has involved an investigation of the thermochemistry of systems having potential importance in the clean up of nuclear waste sites.

Threshold behavior: theory and experiment. A theoretical understanding of the kinetic energy dependence of reaction cross sections is in its infancy. We are developing theoretical models that include application of statistical theories, reaction dynamics, and non-adiabatic effects.

Ab initio theory. We consistently apply ab initio theory to provide structures, molecular parameters, and bond energies for use in the analysis and interpretation of our experimental results.

Selected Publications

446. “Guided Ion Beam and Computational Studies of the Decomposition of a Model Thiourea Protein Cross-Linker” Wang, R.; Yang, B.; Wu, R. R.;             Rodgers, M. T.; Schäfer, M.; ArmentroutP. B. J. Phys. Chem. B 2015119, 3727-3742. DOI: 10.1021/jp512997z

447. “Fifty Years of Ion and Neutral Thermochemistry by Mass Spectrometry” Armentrout, P. B. Int. J. Mass Spectrom. (Invited Article: Mass                      Spectrometry Entering its Second Century: 1960’s Concepts to the Present) 2015377, 54-63. DOI: 10.1016/j.ijms.2014.04.005

448. “Structural Elucidation of Hydrated CuOH+ Complexes using IR Action Spectroscopy and Theoretical Modeling” Sweeney, A. F.; O’Brien, J. T.;               Williams, E. R.; ArmentroutP. B. Int. J. Mass Spectrom. (Honor Issue for Veronica Bierbaum) 2015378, 270-280.                                                              DOI: 10.1016/j.ijms.2014.08.037 

  1. “Activation of CH4 by Th+ as Studied by Guided Ion Beam Mass Spectrometry and Quantum Chemistry” Cox, R. M.; Armentrout, P. B.; de Jong,   W. A. Inorg. Chem.2015, 54, 3584–3599. DOI: 10.1021/acs.inorgchem.5b00137
  2. “Evaluation of the Exothermicity of the Chemi-ionization Reaction Sm + O ® SmO+ + e” Cox, R. M.; Kim, J.; Armentrout, P. B.; Bartlett, J.; Van Gundy, R. A.; Heaven, M. C.; Ard, S. G.; Melko, J. J.; Shuman, N. S.; Viggiano, A. A. J. Chem. Phys.2015, 142, 134307. DOI: 10.1063/1.4916396
  3. “Hydration Enthalpies of Ba2+(H2O)x, x = 1 – 8: A Threshold Collision-Induced Dissociation and Computational Investigation” Wheeler, O. W.; Carl, D. R.; Hofstetter, T. E.; Armentrout, P. B. J. Phys. Chem. A2015, 119, 3800-3815. DOI: 10.1021/acs.jpca.5b01087
  4. “Hydrated Copper Ion Chemistry: Guided Ion Beam and Theoretical Investigation of Cu2+(H2O)n (n = 7 – 10) Complexes” Sweeney, A. F.; Armentrout, P. B. Eur. J. Mass Spectrom. (Invited Article: 20th Anniversary Issue)2015, 21, 497-516. DOI: 10.1255/ejms.1334
  5. “Structural Characterization of Gas-Phase Cysteine and Cysteine Methyl Ester Complexes with Zinc and Cadmium Dications by Infrared Multiple Photon Dissociation Spectroscopy” Coates, R. A.; McNary, C. P.; Boles, G. C.; Berden, G.; Oomens, J.; Armentrout, P. B. Phys. Chem. Chem. Phys. (Invited Article: Special Issue on Optical Spectroscopy) 2015, 17, 25799-25808. DOI: 10.1039/C5CP01500F; Correction: 2017, 19, 18777 – 18778. DOI: 10.1039/C7CP90144E
  6. “Experimental and Theoretical Investigations of Infrared Multiple Photon Dissociation Spectra of Glutamine Complexes with Zn2+ and Cd2+” Boles, G. C.; Coates, R. A.; Berden, G.; Oomens, J.; Armentrout, P. B. J. Phys. Chem. B2015, 119, 11607–11617. DOI: 10.1021/acs.jpcb.5b06528; Correction: DOI: 10.1021/acs.jpcb.7b06059
  7. “Reactions of Th+ + H2, D2, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Quantum Chemical Calculations” Cox, R. M.; Armentrout, P. B.; de Jong, W. A. J. Phys. Chem. B (Bruce Garrett Festschrift)2016, 120, 1601-1614. DOI: 10.1021/acs.jpcb.5b08008
  8. “Discriminating Properties of Metal Alkali Ions towards the Constituents of Proteins and Nucleic Acids. Conclusions from Gas-Phase and Theoretical Studies” Rodgers, M. T.; Armentrout, P. B. In Metal Ions in Life Sciences. Volume 16: The Alkali Metal Ions: Their Role for Life, Sigel, A., Sigel, H., Sigel R. K. O., Eds.; Springer: Cham, Switzerland, 2016, pp 103 – 131. DOI: 10.1007/978-3-319-21756-7_4
  1. “Activation of Carbon Dioxide by a Terminal Uranium-Nitrogen Bond in the Gas-Phase: A Demonstration of the Principle of Microscopic Reversibility” Dau, P. D.; Armentrout, P. B.; Michelini, M. C.; Gibson, J. K. Phys. Chem. Chem. Phys., 2016, 18, 7334-7340. DOI: 10.1039/C6CP00494F
  2. “Cationic Noncovalent Interactions: Energetics and Periodic Trends” Rodgers, M. T.; Armentrout, P. B. Chem. Rev. (Thematic Issue: Noncovalent Interactions)2016, 116 (9), 5642–5687. DOI: 10.1021/acs.chemrev.5b00688
  3. “Bond Energies of ThO+ and ThC+: A Guided Ion Beam and Quantum Chemical Investigation of the Reactions of Thorium Cation with O2 and CO” Cox, R. M.; Citir, M.; Armentrout, P. B.; Battey, S. R.; Peterson. K. A. J. Chem. Phys. 2016, 144, 184309. DOI: 10.1063/1.4948812
  4. “Mass Spectrometric Methods for the Determination of Thermodynamic Data” Armentrout, P. B. In The Encyclopedia of Mass Spectrometry. Volume 9: Historical Perspectives, Part A: The Development of Mass Spectrometry, Nier, K. A.; Yergey, A.; Gale, P. J., Eds.; Elsevier: Amsterdam, Netherlands, 2016, pp 231 – 239. DOI: 10.1016/B978-0-08-043848-1.00036-5
  5. “Thermodynamics and Mechanisms of Protonated Asparaginyl-Glycine Decomposition” Boles, G. C.; Wu, R. R.; Rodgers, M. T.; Armentrout, P. B., J. Phys. Chem. B2016, 120, 6525−6545. DOI: 10.1021/acs.jpcb.6b03253
  6. “Zn2+ and Cd2+ Cationized Serine Complexes: Infrared Multiple Photon Dissociation Spectroscopy and Density Functional Theory Investigations” Coates, R. A.; Boles, G. C.; McNary, C. P.; Berden G.; Oomens, J.; Armentrout, P. B. Phys. Chem. Chem. Phys. 2016, 18, 22434 – 22445. DOI: 10.1039/c6cp03805k; Correction: 2017, 19, 18100 – 18101. DOI: 10.1039/C7CP90143G
  7. “Activation of C-H bonds in Pt+ + xCH4 Reactions, where x = 1 – 4: Identification of the Platinum Dimethyl Cation” Wheeler, O. W.; Salem, M.; Gao, A.; Bakker, J. M.; Armentrout, P. B. J. Phys. Chem. A2016, 120, 6216–6227. DOI: 10.1021/acs.jpca.6b05361
  8. “Chemi-ionization Reactions of La, Pr, Tb, and Ho with Atomic O and La with N2O from 200 - 450 K” Ard, S. G.; Shuman, N. S.; Martinez, O.; Armentrout, P. B.; Viggiano, A. A. J. Chem. Phys.2016, 145, 084302. DOI: 10.1063/1.4961263
  9. “Gadolinium (Gd) Oxide, Carbide, and Carbonyl Cation Bond Energies and Evaluation of the Gd + O → GdO+ + e Chemi-Ionization Reaction Enthalpy” Demireva, M.; Kim, J.; Armentrout, P. B. J. Phys. Chem. A2016, 120, 8550–8563. DOI: 10.1021/acs.jpca.6b09309
  10. “Guided Ion Beam and Theoretical Studies of the Reactions of Re+, Os+, and Ir+ with CO” Kim, J.; Cox, R. M; Armentrout, P. B. J. Chem. Phys.2016, 145, 194305. DOI: 10.1063/1.4967820

467.  “Experimental and Theoretical Investigations of Infrared Multiple Photon Dissociation Spectra of Asparagine Complexes with Zn2+ and Cd2+               and Their Deamidation Processes” Boles, G. C.; Coates, R. A.; Berden, G.; Oomens, J.; Armentrout, P. B. J. Phys. Chem. B2016, 120, 12486-                  12500. DOI: 10.1021/acs.jpcb.6b10326; Correction: 2017, 121, 7400. DOI: 10.1021/acs.jpcb.7b06058

  1. “Threshold Collision-Induced Dissociation of Proton-Bound Hydrazine and Dimethylhydrazine Clusters” McNary, C. P.; Armentrout, P. B. J. Phys. Chem. A2016, 120, 9690-9701. DOI: 10.1021/acs.jpca.6b09318
  2. “Threshold Collision-Induced Dissociation of Protonated Hydrazine and Dimethylhydrazine Clustered with Water” McNary, C. P.; Armentrout, P. B. J. Chem. Phys.2016, 145, 214311. DOI: 10.1063/1.4971238
  3. “Methane Activation by 5d Transition Metals: Energetics, Mechanisms, and Periodic Trends” Armentrout, P. B. Chem.: Eur. J. (Invited Minireview), 2017, 23, 10-18. DOI: 10.1002/chem.201602015

471.  “Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-relativistic Coupled-cluster                           Calculations for Twenty Molecules” Cheng, L.; Gauss, J.; Ruscic, B.; Armentrout, P. B.; Stanton, J. F. J. Chem. Theory Computation, 2017, 13,                 1044-1056. DOI: 10.1021/acs.jctc.6b00970

  1. “Thermodynamics and Reaction Mechanisms of Decomposition of the Simplest Protonated Tripeptide, Triglycine: A Guided Ion Beam and Computational Study” Mookherjee, A.; Van Stipdonk, M.J.; Armentrout, P. B. J. Am. Soc. Mass Spectrom.2017, 28, 739-757. DOI: 10.1007/s13361-016-1590-y
  2. “Activation of Methane by Ru+: Experimental and Theoretical Studies of the Thermochemistry and Mechanism” Armentrout, P. B.; Chen, Y.-M. Int. J. Mass Spectrom. (Nico Nibbering Honor Issue) 2017, 413, 135-149. DOI: 10.1016/j.ijms.2016.05.003
  3. “Reactivity of 4Fe+(CO)n=0-2 + O2: Oxidation of CO by O2 at an Isolated Metal Atom” Ard, S. G.; Martinez, O.; Brown, S. A.; Sawyer, J. C.; Armentrout, P. B.; Viggiano, A. A.; Shuman, N. S. Phys. Chem. Chem. Phys.2017, 19, 8768-8777. DOI: 10.1039/C6CP08703E
  4. “Gadolinium Cation (Gd+) Reaction with O2: Potential Energy Surface Mapped Experimentally and with Theory” Demireva, M.; Armentrout, P. B. J. Chem. Phys.2017, 146, 174302. DOI: 10.1063/1.4982683
  5. “Potential Energy Surface for Reaction of Sm+ + CO2 ® SmO+ + CO: Guided Ion Beam and Theoretical Studies” Armentrout, P. B.; Cox, R. M Phys. Chem. Chem. Phys. 2017, 19, 11075 – 11088. (2017 PCCP HOT Article) DOI: 10.1039/C7CP00914C
  6. “Experimental and Theoretical Investigations of Infrared Multiple Photon Dissociation Spectra of Glutamic Acid Complexes with Zn2+ and Cd2+” Boles, G. C.; Owen, C. J.; Berden, G.; Oomens, J.; Armentrout, P. B. Phys. Chem. Chem. Phys.2017, 19, 12394 - 12406. DOI: 10.1039/C7CP01786C; Correction: 2017, 19, 18774 – 18776. DOI: 10.1039/c7cp90145c
  7. “Thermochemical Investigations of Hydrated Nickel Dication Complexes by Threshold Collision-Induced Dissociation and Theory” Coates, R. A.; Armentrout, P. B. J. Phys. Chem. A2017, 121, 3629 – 3646. DOI: 10.1021/acs.jpca.7b00635
  8. “How Hot Are Your Ions Really? A Threshold Collision-Induced Dissociation Study of Substituted Benzylpyridinium “Thermometer” Ions” Carpenter, J. E.; McNary, C. P.; Furin, A.; Sweeney, A. F.; Armentrout, P. B. J. Am. Soc. Mass Spectrom. 2017, 28, 1876 – 1888. DOI: 10.1007/s13361-017-1693-0 (2018 Ron Hites Award, ASMS)
  9. “Binding Energies of Hydrated Cobalt Hydroxide Ion Complexes: A Guided Ion Beam and Theoretical Investigation” Coates, R. A.; Armentrout, P. B. J. Chem. Phys.2017, 147, 064305. DOI: 10.1063/1.4991557
  10. “Non-Adiabatic Behavior in the Homolytic and Heterolytic Bond Dissociation of Protonated Hydrazine: A Guided Ion Beam and Theoretical Investigation” McNary, C. P.; Armentrout, P. B. J. Chem. Phys. 2017, 147, 124306. (2017 Editor’s Choice Article) DOI: 10.1063/1.4997415
  11. “Threshold Collision-induced Dissociation and Theoretical Study of Protonated Azobenzene” Rezaee, M.; McNary, C. P.; Armentrout, P. B. J. Chem. Phys.2017, 147, 164308. DOI: 10.1063/1.5000683
  12. “Guided Ion Beam and Theoretical Studies of the Bond Energy of SmS+” Armentrout, P. B.; Demireva, M.; Peterson, K. A. J. Chem. Phys.2017, 147, 214307. DOI: 10.1063/1.5009916
  13. “Binding Energies of Hydrated Cobalt(II) By Collision-Induced Dissociation and Theoretical Studies: Evidence for a New Critical Size” Coates, R. A.; Armentrout, P. B. Phys. Chem. Chem. Phys. 2018, 20, 802-818. (2017 PCCP HOT Article) DOI: 10.1039/C7CP05828D
  14. “Structures of the Dehydrogenation Products of Methane Activation by 5d Transition Metal Cations Revisited: Deuterium Labeling and Rotational Contours” Owen, C. J.; Boles, G. C.; Chernyy, V.; Bakker, J. M.; Armentrout, P. B. J. Chem. Phys.2018, 148, 044307. DOI: /10.1063/1.5016820
  15. “Lanthanides as Catalysts: Guided Ion Beam and Theoretical Studies of Sm+ + COS” Armentrout, P. B.; Cox, R. M; Sweeny, B. C.; Ard, S. G.; Shuman, N. S.; Viggiano, A. A. J. Phys. Chem. A (W. Lester S. Andrews Festschrift) 2018, 122, 737-749. DOI: 10.1021/acs.jpca.7b09905
  16. “Activation of H2 by Gadolinium Cation (Gd+): Bond Energy of GdH+ and Mechanistic Insights from Guided Ion Beam and Theoretical Studies” Demireva, M.; Armentrout, P. B. J. Phys. Chem. A2018, 122, 750-761. DOI:10.1021/acs.jpca.7b11471
  17. “Activation of CO2 by Gadolinium Cation (Gd+): Energetics and Mechanism from Experiment and Theory” Demireva, M.; Armentrout, P. B. Topics in Catalysis (Size-Selected Clusters as Model Systems for Catalysis)2018, 61, 3-19. DOI 10.1007/s11244‑017-0858-1
  1. “Deamidation of Protonated Asparagine-Valine Investigated by a Combined Spectroscopic, Guided Ion Beam, and Theoretical Study” Kempkes, L. J. M.; Boles, G.C.; Martens, J.; Berden, G.; Armentrout, P. B.; Oomens, J. J. Phys. Chem. A. 2018, 122, 2424-2436. DOI: 10.1021/acs.jpca/7b12348
  2. “Experimental and Theoretical Investigations of Infrared Multiple Photon Dissociation Spectra of Aspartic Acid Complexes with Zn2+ and Cd2+” Boles, G. C.; Hightower, R. L.; Coates, R. A.; McNary, C. P.; Berden, G.; Oomens, J.; Armentrout, P. B. J. Phys. Chem. B2018, 122, 3836-3853. DOI: 10.1021/acs.jpcb.8b00801
  3. “Second–Shell Thermochemistry for Hydration of Strontium Dications as Determined by Threshold Collision-Induced Dissociation and Computations” Wheeler, O. W.; Carl, D. R.; Armentrout, P. B. Int. J. Mass Spectrom.2018, 429, 76-89. DOI: 10.1016/j.ijms.2017.05.009
  4. “Spectroscopic Identification of the Carbyne Hydride Structure of the Dehydrogenation Product of Methane Activation by Osmium Cations” Armentrout, P. B.; Kuijpers, S.; Lushchikova, O. V.; Hightower, R. L.; Boles, G. C.; Bakker, J. M. J. Am. Soc. Mass Spectrom. (R. Julian Biemann Issue: Mass Spectrometry – Photons and Radicals)2018, 29, 1781-1790. DOI: 10.1007/s13361-018-1929-7
  5. “Experimental and Theoretical Investigations of Infrared Multiple Photon Dissociation Spectra of Arginine Complexes with Zn2+ and Cd2+” Chalifoux, A. M.; Boles, G. C.; Berden, G.; Oomens, J.; Armentrout, P. B. Phys. Chem. Chem. Phys.2018, 20, 20712-20725. DOI: 10.1039/c8cp03484b
  6. “Perspective: 18-Electrons and Counting” Armentrout, P. B. Science2018, 361, 849-850. DOI: 10.1126/science.aau6622
  7. “Experimental and Theoretical Investigations of Infrared Multiple Photon Dissociation Spectra of Lysine Complexes with Zn2+ and Cd2+” Owen, C. J.; Boles, G. C.; Berden, G.; Oomens, J.; Armentrout, P. B. Eur. J. Mass Spectrom.(In Memorium for Rob Dunbar) in press.
  8. “Protonated Asparaginyl-Alanine Decomposition: A Guided Ion Beam, SORI-CID, and Computational Analysis” Boles, G. C.; Wu, R. R.; Rodgers, M. T.; Armentrout, P. B. J. Am. Soc. Mass Spectrom. in press. DOI: 10.1007/s13361-018-2052-5
  9. “Sequential Activation of Methane by Ir+: An IRMPD and Theoretical Investigation” Wheeler, O. W.; Salem, M.; Gao, A.; Bakker, J. M.; Armentrout, P. B. Int. J. Mass Spectrom. (H. Schwarz Festscrift) submitted for publication.
  10. "Structural and Energetic Effects of 2'-Ribose Methylation of Protonated Purine Nucleosides" He, C.; Hamlow, L.; Devereaux, Z.; Zhu, Y.; Nei, Y.; Fan, L.; McNary, C.; Maitre, P.; Steinmetz, V.; Schindler, B.; Compagnon, I.; Armentrout, P. B.; Rodgers, M. T. J. Phys. Chem. B submitted for publication.
  11. “Samarium Cation (Sm+) Reactions with H2, D2, and HD: SmH+ Bond Energy and Mechanistic Insights from Guided Ion Beam and Theoretical Studies” Demireva, M.; Armentrout, P. B. J. Chem. Phys. submitted for publication.
  12. “Hydration Energies of Iron Hydroxide Cation: A Guided Ion Beam and Theoretical Investigation” Sander, O.; Armentrout, P. B. J. Phys. Chem. A2019123, 1675-1688. DOI: 10.1021/acs.jpca.8b12257
  13. “Experimental and Computational Study of the Group 1 Metal Cation Chelates with Lysine: Bond Dissociation Energies, Structures, and Structural Trends” Clark, A. A.; Yang, B.; Rodgers, M. T.; Armentrout, P. B. J. Phys. Chem. B2019, 123, 1983-1997. DOI: 10.1021/acs.jpcb.8b11967
  14. “Sigma Bond Activation of Deuterium Mediated by Atomic Cerium Cations: Experiment and Theory” Manard, M. J.; Kemper, P. R.; Trainham, R.; Armentrout, P. B. Int. J. Mass Spectrom. 2019, 441, 19-24. DOI: 10.1016/j.ijms.2019.03.006
  15. “Evaluation of the Exothermicity of the Chemi-ionization reaction Nd + O ® NdO+ + e- and Neodymium Oxide, Carbide, Dioxide, and Carbonyl Cation Bond Energies” Ghiassee, M.; Kim, J.; Armentrout, P. B. J. Chem. Phys.2019, 150, 144309. DOI: 10.1063/1.5091679
  16. “Bond Dissociation Energy of Au2+: A Guided Ion Beam and Theoretical Investigation” Owen, C. J.; Keyes, N. R.; Xie, C.; Guo, H.; Armentrout, P. B. J. Chem. Phys. (Featured Article) 2019, 150, 174305. DOI: 10.1063/1.5092957
  17. “Thermodynamics and Reaction Mechanisms for Decomposition of a Simple Protonated Tripeptide, H+GAG: A Guided Ion Beam and Computational Study” Mookherjee, A.; Armentrout, P. B. J. Am. Soc. Mass Spectrom.2019, 30, 1013-1027. DOI: 10.1007/s13361‑019‑02144‑3
  18. “Ion Spectroscopy and Guided Ion Beam Studies of Protonated Asparaginyl-Threonine Decomposition: Influence of a Hydroxyl Containing C-Terminal Residue on Deamidation Processes” Boles, G. C.; Kempkes, L. J. M.; Martens, J.; Berden, G.; Oomens, J.; Armentrout, P. B. Int. J. Mass Spectrom.(McLuckey Special Issue)2019, 442, 64-82. DOI: 10.1016/j.ijms.2019.05.010
  19. “Metallacyclopropene Structures Identified by IRMPD Spectroscopic Investigation of the Dehydrogenation Reactions of Ta+ and TaO+ with Ethene” Wheeler,O. W.; Coates,R. A.; Lapoutre,V. J. F.; Bakker,J. M.; Armentrout, P. B. Int. J. Mass Spectrom. (Special Issue on Ion Spectroscopy)2019, 442, 83-94. DOI: 10.1016/j.ijms.2019.04.005
  20. “Au2+ cannot catalyze conversion of methane to ethene at low temperature” Shuman, N. S.; Ard, S. G.; Sweeny, B. C.; Pan, H.; Viggiano, A. A.; Keyes, N. R.; Guo, H.; Owen, C. J.; Armentrout, P. B. Catal. Sci. Technol.2019, 9, 2767-2780. (2019 Catalysis Science & Technology HOT Article) DOI: 10.1039/C9CY00523D
  21. “Infrared Multiple Photon Dissociation Action Spectroscopy of Protonated Glycine, Histidine, Lysine, and Arginine Complexed with 18-Crown-6 Ether” McNary, C. P.; Nei, Y.-w.; Maitre, P.; Rodgers, M. T.; Armentrout, P. B. Phys. Chem. Chem. Phys.2019, 21, 12625-12639. DOI: 10.1039/C9CP02265A
  22. “Bond Energy of ThN+: A Guided Ion Beam and Quantum Chemical Investigation of the Reactions of Thorium Cation with N2 and NO” Cox, R. M; Kafle, A.; Armentrout, P. B.; Peterson, K. A. J. Chem. Phys. 2019, 151, 034304. DOI: 10.1063/1.5111534
  23. “Mechanism and Energetics of the Hydrolysis of Th+ to Form Th(OD)3+: Guided Ion Beam and Theoretical Studies of ThO+, ThO2+, and OThOD+ Reacting with D2O” Kafle, A.; Armentrout, P. B. J. Phys. Chem. A2019, 123, 5893-5905. DOI: 10.1021/acs.jpca.9b03938
  24. “Benzhydrylpyridinium Ions: A New Class of Thermometer Ions for the Characterization of the Electrospray-Ionization Process” Rahrt, R.; Auth, T.; Demireva, M.; Armentrout, P. B.; Koszinowski, K. Anal. Chem.2019, 91, 11703-11711. DOI: 10.1021/acs.analchem.9b02257
  25. “Activation of Water by Thorium Cation: A Guided Ion Beam and Quantum Chemical Study” Cox, R. M; Armentrout, P. B. J. Am. Soc. Mass Spectrom.2019, 30, 1835-1849. DOI: 10.1007/s13361-019-02162-1
  26. “Infrared Spectroscopy of Gold Carbene Cation (AuCH2+): Covalent or Dative Bonding?” Armentrout, P. B.; Stevenson, B. C.; Yang, F.; Wensink, F. J.; Lushchikova, O. V.; Bakker, J. M. J. Phys. Chem. A.2019, 123, 8932-8941. DOI: 10.1021/acs.jpca.9b08049
  27. “Structural Effects of O2′-Ribose Methylation on Protonated Pyrimidine Nucleosides” He, C. C.; Hamlow, L. A.; Zhu, Y.; Nei, Y.-w.; Fan, L.; McNary, C. P.; Maitre, P.; Steinmetz, V.; Schindler, B.; Compagnon, I.; Armentrout, P. B.; Rodgers, M. T. J. Am. Soc. Mass Spectrom.2019, 30, 2318-2334. DOI: 10.1007/s13361-019-02300-9
  28. “Zinc and Cadmium Complexation of L-Threonine: An Infrared Multiple Photon Dissociation Spectroscopy and Theoretical Study” Boles,G. C.; Hightower, R. L.; Berden, G.; Oomens, J.; Armentrout, P. B. J. Phys. Chem. B 2019, 123, 9343-9354. DOI: 10.1021/acs.jpcb.9b08184
  29. “Thermochemical Studies of Reactions of Re+ with SO2 Using Guided Ion Beam Experiments and Theory” Kim, J.; Cox,R. M; Armentrout, P. B. Phys. Chem. Chem. Phys.2020, 22, 3191 - 3203. (2020 PCCP HOT Article) DOI: 10.1039/C9CP06711F
  30. “A Guided Ion Beam and Quantum Chemical Investigation of the Thermochemistry of Thorium Dioxide Cations: Thermodynamic Evidence for Participation of f Orbitals in Bonding” Armentrout, P. B.; Peterson, K. A. Inorg. Chem. 2020, 59, 3118-3131. DOI: 10.1021/acs.inorgchem.9b03488
  31. “Cerium cation (Ce+) Reactions with H2, D2, and HD: CeH+ Bond Energy and Mechanistic Insights from Guided Ion Beam and Theoretical Studies” Ghiassee, M.; Armentrout, P.B. J. Phys. Chem. A2020, 124, 2560-2572. DOI: 10.1021/acs.jpca.0c00894
  32. “Threshold Collision-Induced Dissociation of Hydrated Thorium Trihydroxide Cation (IV): Experimental and Theoretical Investigation of the Binding Energies for Th(OH)3+(H2O)n Complexes (n = 1 – 4)” Kafle, A.; Nwokolo, C.; Sanchez, L.; Armentrout, P. B. J. Phys. Chem. A2020, 124, 3090-3100. DOI: 10.1021/acs.jpca.9b11516
  33. “Methane Adducts of Gold Dimer Cations: Thermochemistry and Structure from Collision-induced Dissociation and Association Kinetics” Shuman, N. S.; Ard, S. G.; Sweeny, B. C.; Viggiano, A. A.; Owen, C. J.; Armentrout, P. B. J. Phys. Chem. A2020, 124, 3335-3346. DOI: 10.1021/acs.jpca.0c01217
  34. “What is the Bond Dissociation Energy of the Vanadium Hydride Cation?” Armentrout, P. B.; Chang, Y.-C.; Ng, C.-Y. J. Phys. Chem. A2020, 124, 5306-5313. DOI: 10.1021/acs.jpca.0c04517
  35. “Zinc and Cadmium Complexation of L-Methionine: An Infrared Multiple Photon Dissociation Spectroscopy and Theoretical Study” Boles, G. C.; Stevenson, B. C.; Hightower, R. L.; Berden, G.; Oomens, J.; Armentrout, P. B. J. Mass Spectrom. (Special Issue: AOMSC 2020)2021, 56, e4580. DOI: 10.1002/jms.4580
  36. “Water loss from protonated XxxSer and XxxThr dipeptides gives oxazoline – not oxazolone – product ions” Oomens, J.; Kempkes, L. J. M.; Geurts, T. P. J.; van Dijk, L.; Martens, J.; Berden, G.; Armentrout, P. B. J. Am. Soc. Mass Spectrom.2020, 31, 2111-2123.DOI:10.1021/jasms.0c00239
  37. “Guided Ion Beam Tandem Mass Spectrometry and Theoretical Study of SO2 Activated by Os+” Kim, J.S.; Armentrout, P. B. J. Phys. Chem. A2020, 124, 6629-6644. DOI: 10.1021/acs.jpca.0c05757
  38. “Cis-trans Isomerization is Not Rate Determining for b2 Ion Structures: A Guided Ion Beam and Computational Study of the Decomposition of H+(GlyProAla)” Jones, R. M.; Boles, G. C.; Armentrout, P. B. Int. J. Mass Spectrom. (William L. Hase Memorial Issue)2020, 458, 116434. DOI: 10.1016/j.ijms.2020.116434
  39. “Praseodymium cation (Pr+) reactions with H2, D2, and HD: PrH+ bond energy and mechanistic insights from guided ion beam and theoretical studies” Ghiassee, M.; Ewigleben, J.; Armentrout, P. B. J. Chem. Phys.2020, 153, 144304. DOI: 10.1063/5.0027854
  40. “IRMPD Spectroscopic and Theoretical Structural Investigations of Zinc and Cadmium Dications Bound to Histidine Dimers” Stevenson, B. C.; Martens, J.; Berden, G.; Oomens, J.; Schäfer, M.; Armentrout, P. B. J. Phys. Chem. A 2020,124, 10266–10276. DOI:10.1021/acs.jpca.0c08861
  41. “Quantum Electronic Control on Chemical Activation of Methane by Collision with Spin-Orbit State Selected Vanadium Cation” Ng, C.-Y.; Xu, Y.; Chang, Y.-C.; Wannenmacher, A.; Parziale, M.; Armentrout, P. B. Phys. Chem. Chem. Phys.2021, 23, 274-286. DOI: 10.1039/d0cp04333h
  42. “Evaluation of the Pr + O ® PrO+ + eChemi-ionization Reaction Enthalpy and Praseodymium Oxide, Carbide, Dioxide, and Carbonyl Cation Bond Energies” Ghiassee, M.; Stevenson, B. C.; Armentrout, P. B. Phys. Chem. Chem. Phys.2021, 23, 2938-2952. DOI: 10.1039/D0CP06252A“Samarium Cation (Sm+) Reactions with H2, D2, and HD: SmH+ Bond Energy and Mechanistic Insights from Guided Ion Beam and Theoretical Studies” Demireva, M.; Armentrout, P. B. J. Chem. Phys. submitted for publication.
  43. "Influence of a Hydroxil Group on the Deamidation and Dehydration Reactions of Protonated Asparagine-Serine Investigated by Combined Spectroscopic, Guided Ion Beam, and Theoretical Approaches" Boles, G. C.; Kempkes, L. J. M.; Martens, J.; Berden, G.; Oomens, J.; Armentrout, P. B. J. Am. Soc. Mass Spectrom. 2021, 32, 786-805. DOI: 10.1021/jasms.0c00468  
  44. “Thermochemistry of Ir+ + SO2 Reaction using Guided Ion Beam Tandem Mass Spectrometry with Theory” Kim, J.; Armentrout, P. B. J. Chem. Phys.2021, 154, 124302. DOI: 10.1063/5.0047513
  45. “Relative Energetics of the Gas Phase Protomers of p‑Aminobenzoic Acid and the Effect of Protonation Site on Fragmentation” Demireva, M.; Armentrout, P. B. J. Phys. Chem. A (Cheuk-Yiu Ng Festschrift)2021, 125, 2849-2865. DOI: 10.1021/acs.jpca.0c11540
  46. “Structural Characterization of M+CH2 Products Formed by Reaction of 5d Metal Cations Pt+ and Ir+ with Ethylene Oxide and Ta+ with Methane using Messenger Spectroscopy” Bakker, J. M.; Owen, C. J.; Nooteboom, S. W.; Lushchikova, O. V.; Armentrout, P. B. J. Molec. Spectros. (S. Schlemmer Festschrift), 2021, 378, 111472. DOI: 10.1016/j.jms.2021.111472
  47. “Activation of D2 by Neodymium Cation (Nd+): Bond Energy of NdH+ and Mechanistic Insights through Experimental and Theoretical Studies” Ghiassee, M.; Armentrout, P. B. J. Phys. Chem. A (Daniel Neumark Festschrift), 2021, 125, 2999-3008. DOI: 10.1021/acs.jpca.1c01766
  48. “Thermochemical Studies of Hydrated Manganese Dications, Mn2+(H2O)x (x = 4 – 9), Using Guided Ion Beam Tandem Mass Spectrometry” Yang, F.; Coates, R.; Boles, G. C.; Armentrout, P. B. Int. J. Mass Spectrom. (Paul Kebarle Honor Issue) 2021, 468, 116638. DOI: 10.1016/j.ijms.2021.116638
  49. “Guided Ion Beam Studies of the Thorium Mono-carbonyl Cation Bond Dissociation Energy and Theoretical Unveiling of Different Isomers of [Th,O,C]+ and Their Rearrangement Mechanism” Kafle, A.; Armentrout, P. B.; Battey,S. R.; Peterson, K. A. Inorg. Chem.2021,60, 10426–10438. DOI: 10.1021/acs.inorgchem.1c01012
  50.  “Sodium Binding Interactions with the Aliphatic Amino Acids: A Guided Ion Beam and Computational Study” Pham, H. D. M.; Boles, G. C.; Armentrout, P. B. Phys. Chem. A (125 Years of J. Phys. Chem.)2021, 125, 29, 6332–6347. DOI:10.1021/acs.jpca.1c04374
  51. “Infrared Multiple Photon Dissociation Spectra of Sodiated Complexes of the Aliphatic Amino Acids” Armentrout, P. B.; Boles, G. C.; Ghiassee, M.; Berden, G.; Oomens, J. J. Phys. Chem. A2021, 125, 6348−6355. DOI: 10.1021/acs.jpca.1c04708
  52. “Holmium (Ho) Oxide, Carbide, and Dioxide Cation Bond Energies and Evaluation of the Ho + O → HoO+ + e Chemi-Ionization Reaction Enthalpy” Owen, C. J.; Kim, J.; Armentrout, P. B. J. Chem. Phys.2021, 155, 094303. DOI: 10.1063/5.0064141
  53. “Reactions of U+ with H2, D2, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Theory” Zhang, W.-J.; Demireva, M.; Kim, J.; de Jong, W. A.; Armentrout, P. B. J. Phys. Chem. A2021, 125, 36, 7825–7839. DOI: 10.1021/acs.jpca.1c05409
  54. “An Investigation of Inter-Ligand Coordination and Flexibility: IRMPD Spectroscopic and Theoretical Evaluation of Calcium and Nickel Histidine Dimers” Stevenson, B. C.; Peckelsen, K.; Martens, J.; Berden, G.; Oomens, J.; Schäfer, M.; Armentrout, P. B. J. Molec. Spectrosc. (Special Issue on Spectroscopy with Free Electron Lasers and Synchrotron Radiation)2021, 381, 111532. DOI: 10.1016/j.jms.2021.111532
  55. “Determination of the SmO+ bond energy by threshold photodissociation of the cryogenically cooled ion” Lachowicz, A.; Perez, E.; Shuman, N. S.; Ard, S. G.; Viggiano, A. A.; Armentrout, P. B.; Goings, J.; Sharma, P.; Li, X.; Johnson, M. J. Chem. Phys. (2021 Editor’s Choice Article) 2021, 155, 174303. DOI: 10.1063/5.0068734
  56. “Infrared Multiple Photon Dissociation Action Spectroscopy of Protonated Unsymmetrical Dimethylhydrazine and Proton-bound Dimers of Hydrazine and Unsymmetrical Dimethylhydrazine” McNary, C. P.; Demireva, M.; Martens, J.; Berden, G.; Oomens, J.; Hamlow, L. A.; Rodgers, M. T.; Armentrout, P. B. Phys. Chem. Chem. Phys.2021, 23, 25877-25885. DOI: 10.1039/d1cp03781a
  57. “Cryo Spectroscopy of N2 on Cationic Iron ClustersStraßner, A.; Wiehn, C.; Klein, M. P.; Fries, D. V.; Dillinger, S.; Mohrbach, J.; Prosenc, M. H.; Armentrout, P. B.; Niedner-Schatteburg, G. J. Chem. Phys.2021, 155, 244305. DOI: 10.1063/5.0064966
  58. Kinetics of Stepwise Nitrogen Adsorption by Size-selected Iron Cluster Cations: Evidence for Size-dependent Nitrogen Phobia” Straßner, A.; Klein, M. P.; Fries, D. V.; Wiehn, C.; Huber, M. E.; Mohrbach, J.; Dillinger, S.; Spelsberg, D.; Armentrout, P. B.; Niedner-Schatteburg, G. J. Chem. Phys.2021, 155, 244306. DOI: 10.1063/5.0064965
  59. “Experimental and Computational Investigation of the Bond Energy of Thorium Dicarbonyl Cation and Theoretical Elucidation of Its Isomerization Mechanism to the Thermodynamically Most Stable Isomer, Thorium Oxide Ketenylidene Cation, OTh+CCO” Kafle, A.; Armentrout, P. B. Phys. Chem. Chem. Phys. 2022, 24, 842853. DOI: 10.1039/d1cp04263g
  60. “Reactions of Atomic Thorium and Uranium Cations with CF4 Studied by Guided Ion Beam Tandem Mass Spectrometry” Bubas, A. R.; Owen, C. J.; Armentrout, P. B. Int. J. Mass Spectrom.2022, 472, 116778. DOI: 10.1016/j.ijms.2021.116778
  61. “Thermodynamics and Reaction Mechanisms for Decomposition of a Simple Protonated Tripeptide, H+GGA: From H+GGG to H+GAG to H+GGA” Mookherjee, A.; Armentrout, P. B. J. Am. Soc. Mass Spectrom.2022, 33, 2, 355–368. DOI: 10.1021/jasms.1c00345
  62. “Periodic Trends in Gas-phase Oxidation and Hydrogenation Reactions of Lanthanides and 5d Transition Metal Cations” Armentrout, P. B. Mass Spectrom. Rev.(Honor Issue for Diethard Bohme)2022, 41, 606-626. DOI: 10.1002/mas.21703
  63. “Activation of CO2 by Actinide Cations (Th+, U+, Pu+, and Am+) as Studied by Guided Ion Beam and Triple Quadrupole Mass Spectrometry” Cox, R. M; Harouaka, K.; Citir, M.; Armentrout, P. B. Inorg. Chem.2022, 61, 8168-8181. DOI: 10.1021/acs.inorgchem.2c00447
  64. “Thermochemistry and Mechanisms of the Pt+ + SO2 Reaction from Guided Ion Beam Tandem Mass Spectrometry and Theory” Armentrout, P. B. J. Chem. Phys. J. Chem. Phys.2022, 156, 194301. DOI: 10.1063/5.0091510
  65. “Reactions of Atomic Thorium and Uranium Cations with SF6 Studied by Guided Ion Beam Tandem Mass Spectrometry” Bubas, A. R.; Iacovino, A. C.; Armentrout, P. B. J. Phys. Chem. A 2022, 20, 3239-3246. DOI: 10.1021/acs.jpca.2c02090
  66. “IR spectroscopic characterization of methane adsorption on copper clusters Cun+ (n = 2-4)” Lushchikova, O. V.; Reijmer, S.; Armentrout, P. B.; Bakker, J. M. J. Am. Soc. Mass Spectrom. (Honor Issue: Thermodynamics, Kinetics and Mechanisms in Gas-Phase Ion Chemistry) 2022, 33, 1393-1400. DOI: 10.1021/jasms.2c00046
  67. “Potassium Binding Interactions with Aliphatic Amino Acids: Thermodynamic and Entropic Effects Analyzed via a Guided Ion Beam and Computational Study” Jones, R. M.; Nilsson, T.; Walker, S.; Armentrout, P. B. J. Am. Soc. Mass Spectrom.(Honor Issue: Thermodynamics, Kinetics and Mechanisms in Gas-Phase Ion Chemistry) 2022, 33, 1427-1442. DOI: 10.1021/jasms.2c00079
  68. “C-H bond activation and C-C coupling of methane on a single cationic platinum center: A spectroscopic and theoretical study” Wensink, F. J.; Roos, N.; Bakker, J. M.; Armentrout, P. B. Inorg. Chem.2022, 61, 11252-11260. DOI: 10.1021/acs.inorgchem.2c01328
  69. Energetics and Mechanisms for Decomposition of Cationized Amino Acids and Peptides Explored Using Guided Ion Beam Tandem Mass Spectrometry” Armentrout, P. B. Mass Spectrom. Rev. (Honor Issue for Karoly Vekey)2023, 42, 928-953. DOI: 10.1002/mas.21723 
  70. “Comment on ‘Gas-phase ion-molecule interactions in a collision reaction cell with triple quadrupole-inductively coupled plasma mass spectrometry: Investigations with N2O as the reaction gas’ by Khadouja Harouaka, Caleb Allen, Eric Bylaska, Richard M Cox, Gregory C. Eiden, Maria Laura di Vacri, Eric W. Hoppe, Isaac J. Arnquist” Armentrout, P. B. Spectrochim. Acta B2021, 106345. DOI: 10.1016/j.sab.2021.106345
  71. "Dynamically hidden reaction paths in the reaction of CF3+ + CO," Oda, K.; Tsutsumi, T.; Keshavamurthy, S.; Furuya, K.; Armentrout, P. B.; Taketsugu, T. ACS Phys, Chem. Au2022, 2, 388-398. DOI: 10.1021/acsphyschemau.2c00012
  72. “Infrared Multiple-Photon Dissociation Spectroscopy of Cationized Glycine: Effects of Alkali Metal Cation Size on Gas-Phase Conformation” Armentrout, P. B.; Stevenson, B. C.; Ghiassee, M.; Boles, G. C.; Berden, G.; Oomens, J. Phys. Chem. Chem. Phys.2022, 2022, 24, 22950-22959. DOI: 10.1039/D2CP03469G
  73. “Disassembly Mechanisms and Energetics of Polymetallic Rings and Rotaxanes” Geue, N.; Bennett, T. S.; Arama, A. A.; Ramakers, L. A. I.; Whitehead, G. F. S.; Timco, G. A.; Armentrout, P. B.; McInnes, E. J. L.; Burton, N. A.; Winpenny, R. E. P.; Barran, P. E. J. Am. Chem. Soc.2022, 144, 22528-22539. DOI: 10.1021/jacs.2c07522 
  74. “Sequential Bond Dissociation Energies of Th+(CO)x, x = 3 – 6: Guided Ion Beam Collision-Induced Dissociation and Quantum Computational Studies" Kafle, A.; Armentrout, P. B. Inorg. Chem.2022, 61, 15936-15952. DOI: 10.1021/acs.inorgchem.2c02138 
  75. “Periodic Trends in the Hydration Energies and Critical Sizes of Alkaline Earth and Transition Metal Dication Water Complexes” Yang, F.; Armentrout, P. B. Mass Spectrom. Rev. (Honor Issue for Veronica Bierbaum)2023, e21830. DOI: 10.1002/mas.21830 

  76. “Guided Ion Beam Studies of the Dy + O ® DyO+ + e- Chemi-ionization Reaction Thermochemistry and Dysprosium Oxide, Carbide, Sulfide, Dioxide, and Sulfoxide Cation Bond Energies” Ghiassee, M.; Christensen, E. G.; Fenn, T.; Armentrout, P. B. J. Phys. Chem. A (Honor Issue for Mike Berman)2023, 127, 169−180. DOI:10.1021/acs.jpca.2c07638

  77. “Adduct Ions as Diagnostic Probes of Metallosupramolecular Complexes using Ion Mobility Mass Spectrometry” Geue, N.; Bennett, T. S.; Ramakers, L. A. I.; Timco, G. A.; McInnes, E. J. L.; Burton, N. A.; Armentrout, P. B.; Winpenny, R. E. P.; Barran, P. E. Inorg. Chem.2023, 62, 2672–2679. DOI: 10.1021/acs.inorgchem.2c03698

  78. “Spectroscopic Investigation of the Metal Coordination of the Aromatic Amino Acids with Zinc and Cadmium” Stevenson, B. C.; Berden,G.; Martens, J.; Oomens, J.; Armentrout, P. B. J. Phys. Chem. A (Krishnan Ragavachari Festschrift)2023, 127, 3560-3569. DOI: 10.1021/acs.jpca.2c08940
  79. Thermochemistry of Uranium Sulfide Cations: Guided Ion Beam and Theoretical Studies of Reactions of U+ and US+ with CS2 and Collision-induced Dissociation of US+” Rockow, S.; Bubas, A. R.; Krauel, S. P.; Stevenson, B. C.; Armentrout, P. B. Molec. Phys. (Festschrift in Memory of Dieter Gerlich)2023, in press. DOI: 10.1080/00268976.2023.2175595
  80.  “Bond Energies of UO+ and UC+: Guided Ion Beam and Quantum Chemical Studies of the Reactions of Uranium Cation with O2 and CO” Zhang, W.; Hunt, A. R. E.; Kim,J.; Demireva, M.; Peterson, K. A.; Armentrout, P. B. Isr. J. Chem. (H. Schwarz 80th birthday) 2023, in press e202300026. DOI: 10.1002/ijch.202300026 

 

For a full publication list, see: Peter B. Armentrout - Google Scholar

You can contact me at armentrout@chem.utah.edu

Last Updated: 7/21/23