Skip to content

Matthew Kieber-Emmons



Assistant Professor

B.S., Saint Joseph’s University, 2002
Ph.D., University of Delaware, 2008
NIH Postdoctoral Fellow, Stanford University, 2008-2013

Phone: (801) 587-3185
Office: 3611 TBBC
Research Group

Member of: Biological Chemistry Program

Matt is not recruiting new Ph.D. graduate students into his lab. Undergraduates are welcome to apply for research positions in his lab.

Activities & Awards

  • NIH NSRA Postdoctoral Fellow, 2008

Research Interests

A major contemporary challenge is development of efficient and sustainable systems for energy utilization. Biology is instructive in this endeavor, providing biochemical solutions to a variety of physiological needs in energy conversion and storage. Metalloproteins play central roles in these solutions and thus provide impetus for understanding the mechanistic bioinorganic chemistry of metalloproteins for application to practical bioinspired catalysis.

My laboratory is using what we, and others, learn about how metalloproteins function as inspiration for development of unique energy conversion and storage systems. Being at the nexus of bioinorganic and bioinspired chemistry requires us to employ a multi-disciplinary approach spanning chemical synthesis, molecular biology, physical methods, and theory. This approach fosters a rich training environment for students.

We are presently focused on three distinct problems in energy utilization. First, inspired by photosynthesis, we are developing catalysis that evolve oxygen from water and overcome the traditional synthetic challenges of large overpotentials and poor product release. The catalyst design is accomplished by computationally guided exploration of novel O-O bond forming strategies towards the ultimate goal of practical artificial photosynthesis on electrode surfaces. Second, we are investigating the arguably most important biological energy conversion process, the four-electron reduction of dioxygen to water, which drives the pumping of protons across the mitochondrial membrane during respiration. To uncover the structure-function correlations that couple these events, we are developing new time-resolved spectroscopic probes and methods for in vitro and in vivo use. Finally, we are elucidating the detailed molecular mechanism of ethylene signaling in the ubiquitious copper containing ethylene receptor. The ethylene signaling pathway impacts all phases of plant growth and development and thus has considerable global impact on biofuel and foodstuff production.

More broadly, our fundamental interest in metalloprotein mechanism overlaps problems with significant health, environmental, and technology implications. Metalloproteins are an intrinsically interesting way to study inorganic chemistry as some metalloprotein catalyzed reactions exist for which there is no benchtop equivalent.

Selected Publications

  • VanNatta PE, Ramirez DA, Velarde AR, Ali G, Kieber-Emmons MT. Exceptionally High O-H Bond Dissociation Free Energy of a Dicopper(II) μ-Hydroxo Complex and Insights into the Geometric and Electronic Structure Origins Thereof [published online ahead of print, 2020 Sep 14]. J Am Chem Soc. 2020;10.1021/jacs.0c06425. doi:10.1021/jacs.0c06425

  • Ahlburg NL, Velarde AR, Kieber-Emmons MT, Jones PG, Werz DB. Substituted Benzothietes: Synthesis and a Quantum Chemical Investigation of Their Cycloreversion Properties. Org Lett. 2020;22(11):4255-4260. doi:10.1021/acs.orglett.0c01261

  • Nimens WJ, Lefave SJ, Flannery L, et al. Understanding Hydrogen Bonding Interactions in Crosslinked Methylammonium Lead Iodide Crystals: Towards Reducing Moisture and Light Degradation Pathways. Angew Chem Int Ed Engl. 2019;58(39):13912-13921. doi:10.1002/anie.201906017

  • Cook BJ, Di Francesco GN, Kieber-Emmons MT, Murray LJ. A Tricopper(I) Complex Competent for O Atom Transfer, C-H Bond Activation, and Multiple O2 Activation Steps. Inorg Chem. 2018;57(18):11361-11368. doi:10.1021/acs.inorgchem.8b00921

  • Ali G, VanNatta PE, Ramirez DA, Light KM, Kieber-Emmons MT. Thermodynamics of a μ-oxo Dicopper(II) Complex for Hydrogen Atom Abstraction. J Am Chem Soc. 2017;139(51):18448-18451. doi:10.1021/jacs.7b10833

  • Koepke SJ, Light KM, VanNatta PE, Wiley KM, Kieber-Emmons MT. Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms. J Am Chem Soc. 2017;139(25):8586-8600. doi:10.1021/jacs.7b03278

  • Light KM, Wisniewski JA, Vinyard WA, Kieber-Emmons MT. Perception of the plant hormone ethylene: known-knowns and known-unknowns. J Biol Inorg Chem. 2016;21(5-6):715-728. doi:10.1007/s00775-016-1378-3

  • Kieber-Emmons, M. T., Ginsbach, J. W., Wick, P. K., Lucas, H. R., Helton, M. E., Lucchese, B., Suzuki, M., Zuberbuhler, A. D., Karlin, A. D., Solomon, E. I., Observation of a Cu(II) 2 (μ-1,2-peroxo)/Cu(III) 2 (μ-oxo)2 Equilibrium and its Implications for Copper-Dioxygen Reactivity. Angew. Chem. Int. Ed., 2014, 53, 4935–4939.

  • Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G., Tian, L. Copper active sites in biology. Chem. Rev., 2014, 114, 3659–3853.

  • Ginsbach, J.W.; Kieber-Emmons, M.T.; Noguchi, A.; Nomoto R.; Noguchi, A.; Ohnishi, Y.; Solomon, E.I. "Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF" Proc. Nat. Acad. Sci. 2012, 109, 10793-10797.

  • Kieber-Emmons, M.T.; Halime, Z.; Qayyum, M.F.; Hodgson, K.O.; Hedman, B.; Karlin, K.D; Solomon, E.I. "Spectroscopic Elucidation of a New Structure Type in Heme/Cu Dioxygen Chemistry: Implications for O—O Bond Rupture in Cytochrome c Oxidase" Angew. Chem. Int. Ed. 2012, 51, 168-172.

  • Kieber-Emmons, M.T.; Li, Y.; Halime, Z.; Karlin, K.D.; Solomon , E.I. "Electronic Structure of a Low-spin Heme/Cu Peroxide Complex: Spin-State and Spin-Topology Contributions to Reactivity" Inorg. Chem. 2011, 50, 11777-11786.

  • Solomon, E.I.; Ginsbach, J.; Heppner, D. E.; Kieber-Emmons, M.T.; Kjaergaard, C.H.; Smeets, P.J.; Tian, L.; Woertnik, J. "Copper dioxygen (bio)inorganic chemistry" Faraday Discuss. 2011, 148, 11-39.

  • Halime, Z.; Kieber-Emmons, M.T.; Qayyum, M.F.; Mondal, B.; Puiu, S.C.; Chufán, E.C.; Sarjeant, A.A.N.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.; Karlin, K.D. "Heme-Copper/Dioxygen Complexes: Towards Understanding Ligand-Environmental Effects on Coordination Geometry, Electronic Structure and Reactivity" Inorg. Chem. 2010, 49, 3629-3645.

  • Van Heuleven, K.M.; Kieber-Emmons, M.T.; Riordan, C.G.; Brunold, T.C. "Spectroscopic and Computational Studies on the Trans-μ-1,2-Persulfido-Bridged Dinickel(II) Species [Ni2(tmc)2(S2)](OTf)2: Comparison of End-on Persulfido and Peroxo Bonding in Ni(II) and Cu(II) Species" Inorg. Chem. 2010, 49, 3104-3112.

  • Kieber-Emmons, M.T.; Van Heuvelen, K.M.; Brunold, T.C.; Riordan, C.G.; "Identification of a Trans-μ-1,2-Persulfide Bridged Dinickel(II) species" J. Am. Chem. Soc. 2009, 131, 440-441.

  • Kieber-Emmons, M.T.; Riordan, C.G. "Dioxygen Activation at Mono-Valent Nickel" Acc. Chem. Res. 2007, 40, 618-625.

  • Kieber-Emmons, M.T.; Annaraj, J.; Seo, M.S.; Van Heuvelen, K.M.; Tosha, T.; Kitagawa, T.; Brunold, T.C.; Nam,W.; Riordan, C.G. "Identification of an "End-on" Nickel-Superoxo Adduct, [Ni(tmc)(O2)]+" J. Am. Chem. Soc. 2006, 128, 14230-14231.

  • Schenker, R.; Kieber-Emmons, M.T.; Riordan, C.G.; Brunold, T.C. "Spectroscopic and Computational Studies on the Trans-μ-1,2-Peroxo-Bridged Dinickel(II) Species [{Ni(tmc)}2(O2)](OTf)2: Nature of End-On Peroxo−Nickel(II) Bonding and Comparison with Peroxo−Copper(II) Bonding" Inorg. Chem. 2005, 44, 1752−1762.

  • Kieber-Emmons, M.T.; Schenker, R.; Yap, G.P.A.; Brunold, T.C.; Riordan, C.G. "Spectroscopic Elucidation of a Peroxo Ni2(μ-O2) Intermediate Derived from a Nickel(I) Complex and Dioxygen" Angew. Chem. Int. Ed. 2004, 43, 6716 –6718.

Last Updated: 6/3/21