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A new methodology is proposed for accurate and effective incorporation of the matrix elements of the Madelung
potential into ab initio embedded cluster calculations of macromolecules, polar crystals, and their surfaces.
The electrostatic potential from the infinite crystal lattice is modeled by a finite number (usually several
hundred) of point charges located on a surface enclosing the cluster. A special boundary condition and the
boundary element method are used to determine positions and magnitudes of these point charges. The
advantages and accuracy of this approach are demonstrated on examples of water adsorption on the NaCl-
(001) surface and the electrostatic field in a zeolite pore.

1. Introduction

In recent years the emphasis in theoretical chemistry has been
shifting from properties of gas-phase molecules and reactions
toward challenging areas of condensed-phase systems. Under-
standing physical and chemical processes in biopolymers,
crystals, and solutions and at their interfaces is of great
importance for further progress in medicine, technology, and
environmental research. Embedded cluster calculations1-3 of
chemical processes in the condensed phase recently gained
significant popularity due to their relatively low computational
cost, flexibility, and reasonable accuracy. In embedded cluster
quantum mechanical calculations of crystalline solids, one
usually treats quantum mechanically only a small part of the
crystal lattice. In what follows, we will refer to this quantum
mechanical region as thecluster. The rest of the crystal will
be called theenVironment. The action of the environment on
electrons in the cluster is represented by an embedding potential
Vembd(r ). The embedding potential can be generated by many
different approaches including the Green function technique,4

density functional methods,5 pseudopotential theory,6-8 and
other considerations. In LCAO-based methods, one needs
analytical expressions for matrix elements〈µ|Vembd(r )|ν〉 of the
embedding potential calculated over basis functions in the
cluster. For many crystals of practical interest, the electrostatic,
or Madelung, potentialVel(r ) makes a dominant contribution
to the total embedding potential. Many accurate techniques have
been developed for calculating the Madelung potentialVel(r ) at
any givenpoint in the bulk and near crystal surfaces. Perhaps,
the best known is the Ewald summation method. However, an
accurate calculation of thematrix elementsof the Madelung
potential〈µ|Vel(r )|ν〉 is not a trivial task.9,10 Our goal in this
study is to suggest a simple and yet accurate method for
calculating the matrix elements of the Madelung potential
assuming that the crystal potential at any given point can be
found without difficulty, e.g., by using the Ewald technique.
Currently, there are basically two ways to deal with this

Coulomb problem in ab initio calculations. The first approach
involves a direct summation of the matrix elements of the Ewald
potential given by analytical formulas derived by Saunders and
his coauthors.11 Due to the fast convergence of the Ewald-

type series, the accuracy of such calculations can be systemati-
cally improved by increasing ranges of summation over both
direct and reciprocal lattices. Although this approach, in
principle, provides an ultimate and accurate solution for the
electrostatic embedding potential, its implementation in existing
molecular quantum chemistry programs requires significant
efforts. To our knowledge, the total energy derivatives have
not yet been implemented with this embedding method. For
these reasons, in most practical calculations in the bulk and on
the surface of crystals, another embedded cluster approach has
been used thus far. In this common methodology, the infinite
lattice potential is modeled by a finite number of point charges
placed outside the cluster. Such an approach is attractive
because analytical matrix elements of the point-charge potential,
and often their first and second derivatives, are readily available
in most quantum chemistry programs (nuclear attraction inte-
grals). However, the accuracy of such a method critically
depends on the selection of the total number of point charges,
their positionsRi, and valuesqi. In most previous embedded
cluster studies (for some recent applications see refs 12-15),
these point charges were simply placed at ideal lattice sites and
were assigned values corresponding to ionic charges in the
crystal. In slightly more sophisticated methods, positions and/
or values of peripheral point charges can be adjusted for better
accuracy (see, e.g., references cited in ref 11). A well-known
difficulty of such models is that results converge very slowly,
if at all, when the size of the explicitly considered lattice is
increased. Thus, there is no simple way for systematic
improvement of results. Moreover, construction of such finite
lattice models becomes more difficult for complex low-
symmetry systems, such as proteins, zeolites,16 and crystal
surfaces.
So far, there is no universal prescription for how to select

positions and values for a finite set of point charges to achieve
the best possible representation of the potential generated inside
the cluster by an infinite, or very large, point-charge lattice. In
section 2 we suggest a simple procedure that can overcome this
problem. For brevity, we call this formalism the SCREEP
(surface charge representation of the electrostatic embedding
potential) method. This method employs the conductor bound-
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ary condition as a mathematical device to replace the Ewald
summation of matrix elements. The same boundary condition
has been suggested earlier by Klamt and Schu¨ürmann in their
COSMO solvation model17 to approximate solvent polarization.
It is important to note that although both methods use similar
mathematical techniques, they apply to completely different
physical models. The COSMO methodology approximates
polarizationof a polar liquid as if it were an ideal conductor.
The use of the conductor boundary condition in the SCREEP
model does not mean that any part of the system has conducting
properties. This is merely a convenient mathematical tool
designed to simplify calculations of matrix elements of the
electrostatic potentialin crystal or macromolecules. In section
3 we present applications of SCREEP to adsorption of water
on the NaCl(001) surface and to the electrostatic potential in a
zeolite pore. In particular, we discuss some parameters of the
SCREEP method and how to achieve optimal accuracy at a
reasonable computational cost.

2. The Surface Charge Representation of the Electrostatic
Embedding Potential (SCREEP) Method

Consider a region of space C where the charge density is
zero and the electrostatic potential in this region is produced
by the charge distributionF(r ) lying entirely outside C. In the
SCREEP model, C is the region occupied by cluster atoms, and
F(r ) is the charge density in the environment. A well-known
theorem from electrostatics states that no matter what is the
charge distributionF(r ) outsideC, its electrostatic potentialVel-
(r ) insideC can be rigorously replaced by some surface charge
densityσ(r ) located on theboundaryS of the volume C. The
demonstration goes as follows. First assume that we have filled
the volume C with an ideal grounded metallic conductor. Then
the electrostatic potential inside C becomes exactly zero
independent of the external potentialVel(r ). Physically, this
condition is satisfied due to creation of the charge density-σ-
(r) on the surface S whose potential-ISσ(r ′)/|r - r ′| d2r exactly
compensates the external potentialVel(r ) for all pointsr on the
surface S and in its interior.

Then, according to eq 1, the electrostatic potential generated
by the charge densityσ(r ) on the surface S and in its interior is
exactly equal to the original potentialVel(r ). Note that the
potential generated byσ(r ) outsidethe surface S is generally
different fromVel(r ).
The option to rigorously substituteF(r ) by a charge density

σ(r ) localized on a finite closed surface is important because
often the charge distributionF(r ) may have a very complicated
character (very large or even infinite number of atoms in
biomolecules and crystals) which is not well suited for quantum
calculations, e.g., calculations of matrix elements of the potential
Vel(r ). For computational reasons, we resort to the boundary
element method to represent the continuous surface charge
densityσ(r ). In this method, the surface S is divided intoM
surface elements with areasSj. The surface charge density is
now represented by a set ofM point chargesqj located at the
centers of surface elementsr j

This approximation is accurate when the surface S and the
charge distributionσ(r ) are sufficiently smooth and the number
of surface pointsM is large enough. Then eq 1 can be

approximated by a matrix equation

from which the vector of surface chargesq can be determined
by applying any common technique available for solving
systems of linear equations. For example, one can use the
matrix inversion method

In eqs 3 and 4, the vectorV contains values of the external
electrostatic potential at pointsr j (Vj ) Vel(r j)), andA is theM
× M nonsingular matrix with matrix elements

Nondiagonal elementsAij represent a generic Coulomb interac-
tion between surface elementsr i andr j. The diagonal elements
Ajj describe the self-interaction of the surface elementr j.
Formula 5 was discussed in detail by Klamt and Shu¨ürmann,17

and the coefficient 1.07 was fitted by these authors for better
numerical accuracy.
SCREEP chargesq should be determined once prior to their

use in embedded cluster calculations. The calculation ofq
proceeds in three steps: (i) construct and discretize the SCREEP
surface around a cluster; (ii) calculate Madelung potentialsVj
on the surface elements; (iii) solve linear equations (3). In our
implementation,18SCREEP surfaces S around clusters were built
and discretized as “van der Waals” surfaces from atomic spheres
of a fixed radiusRa using the gepol93 algorithm.19 Madelung
potentialsVj were calculated by using the Ewald summation
technique. The matrix inversion algorithm has been used to
solve equations (3).
In the rest of this paper we will consider several examples in

order to illustrate the applicability of the SCREEP method as
well as a strategy for achieving optimal accuracy. All quantum
calculations have been done with our locally modified version
of the Gaussian92/DFT computer program.20

3. Results

Test calculations revealed several points that should be borne
in mind when using the SCREEP model. First, the SCREEP
model can ensure a correct lattice potential only inside the
surface S. If the radiusRa of atomic spheres is too small, tails
of cluster wave functions may penetrate outside the surface S
and be affected by an incorrect electrostatic potential. Thus,
generally, the accuracy of SCREEP calculations is better for
larger Ra. In most cases,Ra values of 2.5-3.0 Å give
sufficiently accurate results. Second, the SCREEP potential
improves significantly when a finer division of the surface S
into smaller surface elements is used. In most cases, 60
elements per each atomic sphere provide a reasonable compro-
mise between numerical accuracy and computational expense.
Finally, the accuracy can be improved if ions from the
environment that are close to the quantum cluster and surface
S are treated explicitly without the SCREEP approximation; i.e.,
their potential is directly evaluated inside cluster and subtracted
from the potential vectorV in eq 4. The simplest way to specify
the explicitly treated region of the environment is by selecting
a cutoff radiusRcut (Rcut > Ra). Then all lattice ions in the
environment lying withinRcut to the closest atom of the cluster
are attributed to the explicit region.

Vel(r ) - IS
σ(r ′)
|r - r ′| d

2r ) 0 (1)

qj ≈ σ(r j)Sj (2)

V- Aq) 0 (3)

q) A-1V (4)

Aij ) 1
|r j - r i|

for j * i andAjj ) 1.07(4π/Sj)
1/2 (5)
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3.1. The Madelung Potential above the NaCl(001) Surface
and Water Molecule Adsorption. In this section we consider
an application of the SCREEP method to embedded cluster
calculations of water adsorption on the unrelaxed rock-salt NaCl-
(001) surface. We will assume for simplicity that the environ-
ment is represented by an infinite five-layer slab of point charges
((1). To appreciate the advantages of our new approach, let
us first demonstrate the performance of the traditional embed-
ding scheme in which the infinite lattice is substituted by a
neutral block with dimensionsn × n × m (n ) 6-14,m )
3-5),m layers deep. Positions of ions in the block (Ri) were
the same as in the crystal lattice, and their charges were(1.
As an indication of the accuracy, we calculated the rms deviation
of the model potentialVmodel(r j) from the exact Ewald potential
Vel(r j) at 21 equidistant pointsr i havingz coordinates between
1.0 and 5.0 Å directly above the surface cation. These errors
are presented in Table 1. As expected, they show rather poor
convergence with increasing size of the explicitly treated lattice.
Now return to the SCREEP method. The quantum cluster

[Na5Cl4]+ selected for these studies contained nine surface atoms
that form a square 3× 3 (the side view is shown in Figure 1).
As NaCl is a rather ionic crystal, we do not expect that slight
deviation from stoichiometry and assignment of the integer
charge (+1) to this cluster will affect our results in any
significant way. The surface S was constructed by making
spheres of radiusRa ) 2.5 Å around each atom in the cluster
and around nine additional centers (three of them are denoted
by crosses in Figure 1) havingzcoordinates of 4.0 Å just above
each atom in the cluster. Introduction of these additional centers
comes from the necessity to provide enough space for placing
adsorbate molecules inside the SCREEP surface above the
crystal. Each full atomic sphere was divided into 60 surface
elements, so that the entire surface was divided into 442 surface
elements.
The rms errors for the SCREEP potential with different values

of Rcut are shown in Figure 2 (thin full line and squares). Even
in the case where no lattice ions beyond the cluster are treated
explicitly (Rcut ) 2.0 Å is smaller than the interionic distance
in NaCl, 2.82 Å), the error of 0.12 kcal/mol is already smaller
than that for all explicit lattice models from Table 1 except for

the 14× 14× 4 lattice consisting of 775 ions outside the cluster.
For largerRcut values, a more accurate SCREEP representation
of the electrostatic potential is obtained, but calculated errors
have some irregular dependence onRcut. This behavior strongly
correlates with the total chargeQtot (dashed line and circles in
Figure 2) of theextended clusterregion which is defined as the
quantum cluster plus the explicitly treated part of the environ-
ment. This is because for nonzero values ofQtot, a significant
total surface charge should be created on the surface S in order
to simulate the potential from the rest of the lattice. In this
case, the self-interaction of surface charges described by
diagonal elementsAjj of the matrixA would have a noticeable
contribution to the total potential balance on the surface. The
accuracy of this term, however, is limited by the use of the
empirical multiplier 1.07 in eq 5. One way to reduce this error
is to select the extended cluster in such a way that its total charge
is zero or small. This condition is satisfied automatically if
the extended cluster is constructed from neutral unit cells. More
specifically, in this modified scheme denoted asRcut/UC in
Figure 2, if some ion lies closer thanRcut to the cluster, then
we attribute to the extended cluster the whole unit cell containing
this ion. As seen from Figure 2 (thick full line and diamonds),
such an approach, indeed, yields much better accuracy than any
finite lattice model from Table 1. For example, theRcut value
of 3 Å leads to the error of 0.004 kcal/mol, which is not reduced
by further increase ofRcut. In our opinion, this level of accuracy
is sufficient for most chemical applications, though one can
obtain even better accuracy by using a finer division of the
surface S.
To illustrate the use of the SCREEP embedding method in

quantum-chemical SCF calculations, we performed geometry
optimizations using analytical energy gradients for a water
molecule adsorbed on the quantum cluster [Na5Cl4]+. The basis
set and computational conditions were basically the same as
described in our previous work.21 Three embedding schemes
were compared: no embedding at all, i.e., adsorption on the
bare [Na5Cl4]+ cluster; embedding in the finite 8× 8× 4 lattice
of point chargesqi ) (1 (247 explicit lattice ions outside the
cluster); and the SCREEP embedding withRcut ) 3 Å (121
lattice ions in the explicit zone plus 422 point charges on the
surface S). These results are presented in Table 2.

Figure 1. Side view of the [Na5Cl4+H2O]+ cluster on the NaCl(001)
surface and sketch of the SCREEP model.

TABLE 1: Rms Deviations (in kcal/mol) from the Exact
Madelung Potential above the NaCl(001) Surface for Finite
Lattice Models with Dimensionsn × n × m

n× n

m 6× 6 8× 8 10× 10 12× 12 14× 14

3 3.64 1.71 0.97 0.60 0.39
4 2.42 0.83 0.35 0.17 0.09
5 3.10 1.40 0.80 0.51 0.34

Figure 2. Results for the NaCl(001) surface. The charge of the
extended cluster (dashed line) and the standard deviation of the SCREEP
potential from the exact lattice potential (full lines) as functions of the
cutoff radiusRcut.
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It was established in our previous studies21 that H2O
molecularly adsorbs on the NaCl(001) surface with the oxygen
atom above the Na+ site and hydrogen atoms pointing sym-
metrically toward nearest anions and slightly away from the
surface. As seen from Table 2, the neglect of the Madelung
field in the cluster leads to some increase of the oxygen-surface
distance and the molecular tilt angle (the angle between the
molecular axis and the surface). This comparison may explain
why recent ab initio calculations of H2O/NaCl(001) adsorption
using the Na9Cl9 cluster without any embedding potential22

overestimated these parameters. The adsorption energy calcu-
lated by these authors (7.8 kcal/mol) is also close to our result
for the bare cluster (7.5 kcal/mol). Results for 8× 8 × 4 and
SCREEP embedding schemes agree with each other but differ
from those for the bare cluster. This good agreement indicates
that traditional finite lattice embedding (the 8× 8 × 4 lattice
in our case) may be quite successful for simple crystal lattices
if proper care is taken in selecting the finite lattice size.5,21,23,24

Moreover, this agreement confirms our correct implementation
of the SCREEP potential and corresponding energy derivatives
in ab initio molecular orbital calculations.
3.2. Madelung Potential in Zeolite. In contrast to simple

rock-salt structures, for many complex lattices, such as zeolites,
it is not obvious how to select a finite piece of the lattice that
will allow one to accurately model the crystal field. In these
cases, the benefits of using our new embedding scheme versus
finite lattice embedding should be especially clear. We applied
the SCREEP model to the siliceous faujasite with 576 atoms in
the unit cell.25 Atoms in the environment were treated as point
charges with formal valuesqO ) -2.0 andqSi ) 4.0. For a
cluster we selected the molecular complex [Si-O-Si(O)2-O-
Si]4+ located on the surface of a big channel in the faujasite
structure (see Figure 3). The SCREEP surface was constructed
around all cluster atoms and one additional center inside the
channel. The radius of atomic spheresRa was chosen to be 3.0
Å. The rms deviation of the SCREEP potential from the exact
Madelung potential was calculated at 216 points arranged in a
cubic grid 6× 6× 6 with dimensions 2 Å× 2 Å × 2 Å located
inside the channel close to the central silicon atom of the cluster.
Exact Madelung potentials at these points were calculated using
the Ewald method. In the first row of Table 3, we present results
obtained for division of each full atomic sphere into 60 boundary
elements andRcut ) 3.5 Å. The error (1.17 kcal/mol) is rather
large. However, this error is already much smaller than 21.3
kcal/mol reported by Greatbanks et al.16 or 6.3 kcal/mol reported
by Cook et al.26 The error was reduced by using a greater
density of surface points (240 points/sphere) as shown in the
second row of Table 3. The residual error (0.24 kcal/mol) was

mainly due to the nonzero charge (Qtot ) 12) of the extended
cluster. This charge effect was eliminated by explicit treatment
of six more oxygen ions (charge-2) close to the explicit region,
and the accuracy was further improved (the third row in Table
3). Finally, the best accuracy (the fourth row in Table 3) was
achieved by increasingRcut to 4.0 Å. Despite the nonzero charge
of the extended cluster (Qtot ) -2), the error was reduced to
only 0.05 kcal/mol. These calculations clearly demonstrate an
important advantage of the SCREEP method as compared to
traditional point-charge embedding schemes. Our new approach
offers several simple and straightforward procedures for the
systematic improvement of accuracy.

4. Discussion

It is interesting to compare the computational expense
required for calculation ofmatrix elementsof the crystal
electrostatic field by using the SCREEP method versus the direct
Ewald summation.11 We cannot make a direct comparison
because the program for calculating Ewald matrix elements is
not available to us. However, we can estimate the relative
performance of these two methods by comparing the time for
calculation of the electrostaticpotentials. With 641 surface
charges and 40 explicit lattice charges (line IV in Table 3), the
SCREEP calculation of the electrostatic potential at 216 points
in a zeolite pore took only 0.5 s on an IBM RISC/6000 model
370 workstation. A total of 40.5 s was required for evaluating
the Ewald series with summation indices running from-1 to
+1 for both direct and reciprocal lattices. Although the
SCREEP method is 2 orders of magnitude faster in this case,
the Ewald summation is more accurate. Taking the convergence
parameter for the Ewald method from eq 55 in ref 11, we found
the rms deviation from the exact potential in 216 points of only
0.0007 kcal/mol. This should be compared with 0.05 kcal/mol

TABLE 2: Geometry (Distances in Å, Angles in deg)a and
Adsorption Energy (kcal/mol) for H 2O Molecule Adsorbed
on the NaCl(001) Surface Calculated Using the [Na5Cl4+
H2O]+ Quantum Cluster and Different Embedding Schemes

no embedding 8× 8× 4 SCREEP

no. of point charges 0 247 543
Oz 2.390 2.384 2.380
Ox) Oy 0.294 0.374 0.375
OH 0.948 0.949 0.949
HOH angle 106.4 106.2 106.2
tilt angle 19.6 5.4 5.9
adsorption energyb 7.5 8.3 8.3

a The origin was placed at the central Na+ ion in the cluster;x and
y axes were directed toward nearest surface Cl- ions; thezaxis pointed
outside the crystal.b Short-range embedding effects and correlation
corrections have significant effects on adsorption energy;21 therefore,
comparison with experimental data was not attempted here.

Figure 3. The cluster [Si-O-Si(O)2-O-Si]4+ in the faujasite
structure. Larger circles denote Si atoms and smaller circles denote O
atoms. The SCREEP surface (broken line) and the boundary of the
explicit zone (full line) are shown schematically.

TABLE 3: Calculation Parameters and rms Deviations from
the Exact Madelung Potential for the SCREEP Potential in
Zeolite Calculations

M
no. of explicit
lattice charges Qtot Rcut, Å

error
(kcal/mol)

I 158 27 12 3.5 1.17
II 641 27 12 3.5 0.24
III 641 33 0 3.5 0.11
IV 641 40 -2 4.0 0.05
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accuracy given by the SCREEP method. However, the accuracy
of the potential given by SCREEP is already sufficient for
quantum-chemical applications as indicated in our discussion
of the H2O/NaCl calculations from section 3.2. This suggests
that further improvement of the accuracy beyond 0.05 kcal/
mol is not warranted.
Another important difference between these two methods is

their behavior with respect to an increase in the size of the
system. The computational time for the conventional Ewald
summation of matrix elements grows linearly with the number
of atoms in the unit cell. However, the time required to calculate
matrix elements with SCREEP charges does not depend on the
size of the crystal unit cell. Therefore, SCREEP calculations
should be preferred for systems with large unit cells, such as
zeolites, crystal surfaces, or proteins. The number of SCREEP
surface charges grows only asN2/3, whereN is the number of
atoms in the quantum cluster. Thus, the SCREEP model does
not limit the cluster size. Limitations due to evaluation of
intracluster interactions, such as two-electron integrals, are much
more severe. If needed, the performance of the SCREEP
method can be further improved by using the fast multipole
techniques proposed recently for solution of the quantum
Coulomb problem (see, for instance, ref 27).
It should be noted that the SCREEP method allows one to

represent only the electrostatic part of the total embedding
potential. Other components (short-range, polarization, etc.)
may also be important. For example, it is well-known that it is
not possible to optimize positions of boundary atoms in the
cluster without considering non-Coulomb embedding effects.
Thus, in practical calculations with full geometry relaxation in
embedded clusters, the SCREEP method should be combined
with other embedding techniques such as pseudoatom,28,29

localized orbitals,30 pseudopotential,8,31,32or embedded density
functional5 methods which can adequately account for short-
range embedding effects.

5. Conclusions

We suggest a simple method that allows one to incorporate
the matrix elements of the Madelung potential in embedded
cluster calculations of solids. The idea of the method is to
replace the electrostatic potential from the extended charge
distribution of the infinite crystal lattice by the potential from
a finite number of point charges. An analogy with the conductor
shielding of electrostatic fields suggests that for better perfor-
mance these point charges should be located on a closed surface
surrounding the quantum cluster. Then their values can be
determined from a boundary condition describing a conductor
in an external electrostatic field. With appropriate choice of
computational parameters (the size of the explicitly treated
region of the lattice, atomic radii, and division of atomic spheres
into boundary elements), the SCREEPmethod can easily provide
the rms deviation of less than 0.1 kcal/mol from the exact lattice
potential. This accuracy level appears to be sufficient for most
ab initio embedded cluster studies, though it can be further
improved in a simple and systematic way. In H2O/NaCl studies
reported above, the SCREEP electrostatic embedding added only
1-2% of the computational time required for the bare molecule
calculation.
The SCREEP method has shown great potential for studying

important processes in crystals with partly ionic chemical bonds
and on the surface of such crystals. In forthcoming papers we
will report applications of this method for studies of adsorption

and reactions at acidic centers in zeolites and on surfaces of
TiO2 and Al2O3 crystals which are currently underway in our
laboratory. A combination of the SCREEP method with our
recently developed computational model for solid-liquid
interfaces21 will be reported in a separate publication.33 In
addition, the SCREEP method seems promising for quantum-
chemical studies of biological systems. For example, using this
method, the electrostatic field of a protein (tens of thousands
of atoms) on an active site can be represented by only several
hundreds of point charges surrounding a suitable quantum
cluster.
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