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We present a combined quantum-classical-stochastic dynamics method based on the flux-flux 
correlation function for calculating the thermal rate constants of chemical reactions in solution 
or in biological systems. The present method is an extension of an earlier method by Metiu and 
co-workers [J. Chem. Phys. 88, 2478 ( 1988) ] to include stochastic dynamics. The method is 
tested by applying it to a simple model of hydrogen atom transfer reaction in solution. We also 
examine the behavior of the flux-flux correlation function and the rate constants as functions 
of viscosity. 

I. INTRODUCTION 

Although computer technologies have advanced signifi- 
cantly in the past decade, full quantum-mechanical dynam- 
ics calculations are still limited to systems with a few degrees 
of freedom.‘” Even with anticipated increases in computer 
performance, such calculations for important processes such 
as proton transfer in proteins are far from tractable. At the 
present time, the only practical method for detailed simula- 
tions of biological processes is classical molecular dynamics. 
However, classical dynamics does not take into account 
quantum mechanical tunneling, which is a vital process in 
many biological systems, particularly in proton transfer in 
proteins.6 Some attempts at developing a semiclassical tra- 
jectory method’ or calculating the quantum corrections’ for 
these processes have been reported. Recently, Borgis and 
Hynes’ have proposed a quantum transition state theory for 
proton transfer reactions in solution, although applications 
of this method to enzymes have not yet been carried out. 
From a different point of view, the development of a mixed 
quantum-classical dynamics method in which a small num- 
ber of atoms in the system are treated quantum mechanically 
while the remaining atoms are treated classically, would be a 
reasonable approach. Several methods’0*‘6 attempting to 
combine classical and quantum dynamics have been pro- 
posed and have shown some encouraging results for surface 
diffusion, ‘O*’ ’ dissociation on metals,‘* photodissociation in 
solid processes,‘3 colinear bimolecular gas-phase reac- 
tions,14 and also for proton transfer reactions in solution. l6 It 
is worthwhile to mention that also in this spirit, several 
methods”*” have been described that attempt to combine 
molecular orbital theory with molecular mechanics to give 
information about the potential energy surface of chemical 
reaction in macromolecules such as in proteins. Such meth- 
ods in conjunction with a combined quantum-classical dy- 
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namics method such as the one proposed in this study would 
provide a complete tool for studying the quantum dynamics 
of chemical reactions in biological systems. 

Our goal is to develop a mixed quantum-classical dy- 
namics method that enables us to investigate quantum me- 
chanical processes in biological systems such as proton or 
hydrogen atom transfer in proteins. Such a method should 
also be general enough that it can be applied to reactions in 
solutions, in zeolites, or in polymers. In the present paper, 
we extend the mixed quantum-classical dynamics method 
proposed by Wahnstriim, Carmeli, and Metiu” (WCM) to 
include stochastic dynamics for treatments of reactions in 
solutions. This method is based on a flux-flux correlation 
formalism’9~20 for calculating the thermal chemical reaction 
rate constants. Furthermore, we also employ an efficient and 
accurate quantum mechanical time evolution method, 
namely the kinetic referenced modified Cayley method,*“** 
to propagate the wave function in time under the influence of 
a time dependent potential. To test the present method, we 
apply it to a simple model hydrogen atom transfer reaction 
in solution which has the potential energy interaction repre- 
sented by a one-dimensional double-well potential coupled 
to a harmonic bath.23 We examine the behavior of the flux- 
flux correlation function and the calculated rate constants as 
functions of both temperature and solvent viscosity. Appli- 
cations of the present method to proton or hydrogen atom 
transfer reactions in solutions are in principle straightfor- 
ward, but require more realistic potential energy functions 
which are subjects of current research. 

In Sec. II, we review the basic formulation of the flux- 
flux correlation function method for calculating the thermal 
rate constants in mixed quantum-classical dynamics, as pro- 
posed by Metiu and co-workers, and we emphasize the mod- 
ifications made in the present study. The model potential 
energy function for the hydrogen atom transfer reaction in 
solution and the details of the dynamical calculations are 
given in Sec. III. Section IV gives results and discussion. 
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and fihe coordinate and conjugate momentum operators, i 
and P, by the corresponding classical trajectories R(t) and 
P(t). Consequently, Eq. (2) becomes 

In the present study, we consider molecular systems in 
which one atom requires quantum mechanical treatment 
while the remaining can be treated classically. For simpli- 
city, we assume the quantum atom has only one degree of 
freedom denoted as x and its conjugate momentum p. Fur- 
thermore, we assume that x is also the reaction coordinate. 
The remaining iV one-dimensional spectator particles, 
whose coordinates and momenta are denoted by R and P, 
will be treated classically. Generalizing the present formal- 
ism to three-dimensional particles is straightforward. 

dR dp e{ -BH:‘R,P’}IT;CR(f),P(f)}, 
(8) 

where HE (R,P) is the classical Hamiltonian corresponding 
to H,. 

The rate constant k of a chemical reaction for a quantum 
system under thermal conditions can be expressed in terms 
of various correlation functions.‘9*20 For this study, we use 
the Miller, Schwartz, and Tromp*’ expression given by 

WCM have proposed several computational schemes 
for calculating F{R (t) ,P( t) 1. In the present study, we pro- 
pose a new scheme for treatment of reactions in solution. 
Also, we utilize an efficient and accurate quantum evolution 
method in the new computation scheme described below. 

kQ, = 
I 

mcfl(t)df, (1) 
0 

where Q, is the reactant partition function. The flux-flux 
correlation function C, calculated at the dividing surface 
x = x0 is given by 

Computational scheme. In order to calculate 
F{R (t),P( t)), we first consider the matrix element 
(xl14x2) that appears in Eq. (6), and it can be written as 

~~lI~l~2~~~~lI~t~~~~ll~~‘b”~l~~~ 
or in ket notation, 

(9) 

XTr,{(x31Ulx4)*(xlIUlx2)}, (2) 
where x,, x2, x3, and x4 are set equal to x0 after performing 
the derivatives. Tr, is the trace over the spectator variables 
R, and the U operator is defined as 

u = e’ - “t/We - PH/Z) 
, (3) 

where H is the total Hamiltonian operator, t is the time, and 
fi is ( kb 7) - ’ with k, the Boltzmann constant and T the 
temperature. Equations ( l)-( 3) define an exact quantum 
mechanical expression of the rate constant in terms of the 
flux-flux correlation function. WCM have proposed a pro- 
cedure to treat the spectator degrees of freedom classically, 
and it is described in the following. 

First, we assume that the total Hamiltonian can be writ- 
ten as 

H = h(Q,ii) + H,(z,^P), (4) 

where h is the sum of the kinetic energy and potential energy 
operators of the quantum particle plus its interaction with 
the classical atoms and H, is the Hamiltonian operator for 
the spectator atoms interacting with each other only, but not 
with x. Furthermore, we also assume that h and H, com- 
mute. Consequently, we can write 

Tr,{(x31Ulx4)*(xllUIx,)) = Tr,@‘We-“Hs), (5) 
where 

Ftt) = e(~W’*) ~(x31uIx4>*(xlIuIx2)~e(-Mst’fi), (6) 
and 

” = e’ - ihr/+Oe( - ,Th/Z) (7) 
Note that F(t) is still an operator acting over the space of the 
spectator degrees of freedom. 

The next step is to take the classical limits over the spec- 
tator space. To do these, we replace the trace by its corre- 
sponding integral over the spectator classical phase space, 

I$,) = e-‘h”*lq5g). (10) 
For consistency, in the present study, we use the same nota- 
tions as in the previous work of WCM. Here $I is the time 
evolution of the thermal wave function @@ which is defined 
as 

f&(x) = (x(ecPw21x2). (11) 

Thus, the thermal wave function da can be calculated by 
propagating an eigenstate in the coordinate representation 
through imaginary time to the specified temperature. In our 
previous study,** we have found that the (second order) 
kinetic referenced split operator (KRSO) method is more 
efficient compared to others in imaginary time evolution of 
the wave function. Hence, we employ the KRSO method in 
the present study. Furthermore, wheg taking the classical 
limits over the spectator space, h (Q, R ) becomes h (a$, R ) 
where R is just a classical variable. Further details of the 
KRSO method and the computational procedure for calcu- 
lating $a are described in our previous study** and others.” 

From Eq. (lo), $t is obtained by propagating the ther- 
mal wave function 4p in time. In particular, we must solve 
the time dependent Schriidinger equation with the Hamigo- 
nian h( ?,j,R) and the initial condition da (x). However, R is 
replaced by its corresponding classical trajectory R(t) when 
we take the classical limit over the spectator phase space. 
Thus, the potential energy operator in the Hamiltonian h 
becomes a time dependent function. The time dependent 
Schriidinger equation then has the form, 

ifi z = h{Q,R(t)}qbr, 

with the initial condition 4D (x). Since #s (x) also depends 
on R, it is obvious to impose the initial condition in the spec- 
tator classical phase space; i.e., the initial points of the classi- 
cal trajectories R(t) and P(t), R( I = 0) equals R, and 
P( t = 0) equals P, where R and P are the integration vari- 
ables in Eq. (8). There are several methods available for 

J. Chem. Phys., Vol. 96, No. 11,l June 1992 



solving the time dependent Schrijdinger equation with a time 
independent potential energy function, and we refer to our 
previous study** for a detailed discussion of the methodolo- 
gies and efficiencies of these methods. From that study, we 
found that the kinetic referenced modified Cayley (KRMC) 
method is quite efficient in both the computational require- 
ments and accuracy compared to other methods, such as the 
split operator and Chebychev polynomial expansion meth- 
ods. Furthermore, the KRMC method does not depend on 
the form of the potential. Thus, it can treat a time dependent 
potential such as that in Eq. ( 12), and hence it is used in the 
present study. The other two methods on the other hand 
require the time step to be sufficiently small that the poten- 
tial energy is effectively invariant over that time period; con- 
sequently, they would be computationally expensive for 
solving Eq. ( 12 ) . 

The time dependent Schrodinger equation above, Eq. 
( 12), yields the time evolution of the thermal wave function 
r#D (x) . However, it is coupled with the motions of the classi- 
cal particle ( s ) (degrees of freedom). Thus, in order to solve 
Eq. ( 12) for the wave function $,, we must also simulta- 
neously compute the classical trajectory specified by R(t) . 
Since our goal is to develop a method for studying biological 
reactions in solution, we must also include solution effects 
and/or effective motion of protein environment in the dy- 
namics. In the present study, the motions of the classical 
particle(s) are specified by the Newtonian classical dynam- 
ics, whereas solvent motions are implicitly described by the 
stochastic dynamics. The equation of motion for calculating 
R(t) is then expressed as 

W  Mj= --_ 
aR s 

C(x) fj$ ** (x)dx + f, (t) - My& 
(13) 

where M is the mass of the spectator (classical) particle(s), 
V, is the potential energy interactions of the classical parti- 
cles among themselves but not with the quantum particle, uqs 
is the potential energy interaction between only the quantum 
particle and the classical ones, y is the friction constant, and 
f,(t) is the Gaussian random force satisfying the fluctu- 
ation-dissipation conditions 

(r;(O) =o, K(of,co)) =2Jfyk,T&O. (14) 
In the present study, we use a variant of the Verlet algorithm 
proposed by Briinger et al.24 in which the classical coordi- 
nate at time t + r, where r is the time step is determined by 

R(~+T) = ’ 
(I+ $v-) I 

2R(t) - R(t- 7) 

+ [G(t) i-f,(t)] $++f--7)y. 1 , 
(15) 

where G(t) is the sum of the first two terms in Eq. ( 13). The 
advantage of using this algorithm is that it converts to the 
normal Verlet algorithm as the friction constant y goes to 
zero. Thus, we can calculate rate constants as a function of 
the solvent viscosity. 

From Eqs. (6) and (S), we also need to calculate the 
quantity (d/ax,) (xllulxZ) which is quite different from 

(x, lulxZ) discussed above. Again using the same notation as 
in WCM, we have the thermal wave function 

(xI~a)-~a(x)~(xlle-B~2~lx2) 
2 
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which differs from the thermal wave function #s (x) defined 
in Eq. ( 11). However, computationally the difference is only 
in the initial wave function or the first step of the imaginary 
time propagation, as has been discussed previously.25 We 
also use the KRSO method to calculate 4B in this study. 
Subsequently, the calculation of 

is the same as for $, as discussed above except that the initial 
condition is 60 instead of da. Note that in this case, it results 
in a different classical trajectory g(t) since a different wave 
function is used to calculate the Ehrenfest force in Eq. ( 13 ). 

In summary, with the new notation Eq. (8) can be re- 
written as 

CR(t) = (-f$-)Re~$etpBH’(R’P)) 

+3x,,) &$t(a, - lyi’). (18) 

Thus, for each classical phase space point (R,P), we inde- 
pendently and simultaneously calculate the thermal wave 
functions ds and 4, using the KRSO method. Next, we 
simultaneously solve the time dependent Schrodinger equa- 
tions using the KRMC method for $, and $* concurrently 
with integrating the_classical equation of motion using Eq. 
( 15) for R(t) and R(t), respectively. The computational 
flow of the present scheme is quite natural for parallel com- 
puters where one can assign two processors for each phase 
space point (R,P), one for calculating +, and the other 
for $t. To calculate the integral in Eq. ( 18), one can use a 
Monte Carlo method with the Boltzmann factor 
exp{ - /3H f (R,P)) as a weighting function to generate 
phase space points (R,P) as proposed earlier by WCM. For a 
larger number of classical degrees of freedom, a Monte Carlo 
method would be the method of choice. However, for a small 
number of classical degrees of freedom such as in the model 
Hamiltonian used in this study we found it preferable to 
calculate the integral numerically by the Simpson rule meth- 
od to avoid questions concerning the convergence of the 
Monte Carlo method. Thus, we can focus on the influence of 
combining quantum, classical, and stochastic dynamcis on 
the dynamical result itself. 

Note that in the present scheme, the dynamics of the 
classical degrees of freedom are coupled to the quantum co- 
ordinate via the time dependent potential energy interaction. 
Thus, they do not respond properly to excitations in the 
quantum space. For the feedback from the quantum part, 
the force acting on the classical coordinates from the quan- 
tum wave function $, is approximated by the Ehrenfest force 
which is the average over the whole quantum probability 
distribution. One can raise a concern over the validity of the 
Ehrenfest model when the system goes through bifurca- 
tions.26 In such a case, the correct force should be the aver- 
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age depending on which quantum state is considered. In oth- 
er words, verifications of the principle of detailed balance 
and microscopic reversibility at the interface between the 
quantum and classical spaces are not obvious. In the present 
scheme, the stochastic dynamics which describes solvent 
motions only enters in the classical dynamics formalism as in 
Eq. ( 13); thus it directly affects the dynamics of the classical 
degrees of freedom, and indirectly couples to the quantum 
ones. The rationale used here is that one simulation ap- 
proach could consist of three parts.27,28 The innermost shell 
is the quantum part which consists of one or a few atoms, the 
middle shell is the classical part which consists of atoms 
whose dynamics are treated explicitly, and the outermost 
shell is the stochastic part where the dynamics is represented 
by the statistical fluctuation theory. In this picture, the sto- 
chastic shell is only in direct contact with the classical shell. 
This approach would have to be generalized if the middle 
shell were not large enough to screen long range interactions 
between the innermost and outermost regions. 

With the concerns raised above, and the approximations 
in the formalism, it is clear that the present scheme requires 
careful testing. However, the original WCM quantum-clas- 
sical method has been carefully tested against exact quantum 
mechanical calculations for a model Hamiltonian, and suc- 
cessfully applied to hydrogen diffusion on metallic surfaces. 
Furthermore, we carried out quantum-classical-stochastic 
wave packet dynamics calculations for proton transfer in the 
proton bound ammonia dimer [ H,N. . *HNH,] +, proton 
bound water ammonia complex [ H,O* * -HNH,] +, and ma- 
lonaldehyde in our previous study,29 and found that the sim- 
ulation results are in reasonable agreement with available 
experimental data. Reasonable agreement with experiment 
is also obtained in our unpublished simulations of H,+ where 
the electron is the quantum particle, and for [ D,uT] + where 
the muon is the quantum particle. 

In the next section, we present the model Hamiltonian 
for the hydrogen atom transfer reaction and the dynamical 
results obtained using the method described above. 

Ill. MODEL HAMILTONIAN AND COMPUTATIONAL 
DETAILS 

To demonstrate the computational method, we apply it 
to a simple two-dimensional Hamiltonian model for a hy- 
drogen atom transfer reaction. In particular, we used the 
Makri and Miller23 symmetric double well coupled to a har- 
monic oscillator model which has the form 

H=s+g+ V,(x) ++‘[R-s]*. (19) 

Herex is the quantum coordinate and also the reaction coor- 
dinate. V,(x) is a symmetric double well potential 

V,(x) = - .$a$’ + &x4. (20) 
The constants a, and c,, are chosen such that the barrier 
height is at 0.012 43 hartrees, and the two minima are locat- 
ed at x = f 1.0 bohr. The mass m is of the hydrogen atom 
and the harmonic oscillator frequency is set at 298 cm-‘. 
The coupling constant c is set equal to 0.004 hartrees/bohr2. 
These parameters are the same as those in Ref. 23 and are 

typical of H-atom processes. Furthermore, we have chosen 
the quadratic coupling case since it yields a potential energy 
surface similar to those of proton transfer processes we con- 
sidered in our previous study.22 The potential contour for 
this potential energy function is shown in Fig. 1. 

For dynamics calculations, the reaction or quantum co- 
ordinate is discretized using 256 points with the grid size 
Ax = 0.015 bohr. The time steps in both real and imaginary 
time propagation are chosen sufficiently small to ensure the 
convergence of the calculations. In particular, r is set to 0.1 
fs, and the number of imaginary time steps is 100. We use the 
kinetic referenced split operator method for the imaginary 
time quantum propagation, the kinetic referenced modified 
Cayley method for the real time quantum propagation, and 
the Verlet algorithm defined in Eq. ( 15) for the real time 
classical propagation. The integration over the classical 
phase space is done numerically using the Simpson rule 
method with the range and integration step chosen to ensure 
convergence. For the stochastic part, the friction constant y 
is calculated from the Stoke’s law 

y= 67nlq,, (21) 
where 11 is the solvent viscosity; r, is the hydrodynamic radi- 
us and is set equal to 1 A in these calculations. 

IV. DISCUSSION 

We have calculated the rate constants, kQ,, for the tem- 
perature range from 200 to 400 K for the hydrogen atom 
transfer reaction in aqueous solution using the above Hamil- 
tonian model with the water viscosity used in the stochastic 
dynamics. We also examined the behavior of the rate con- 
stant of this hydrogen transfer process with respect to differ- 
ent viscosities. 

6 

4 

% 2 

% 
e 
f-x 0 

-2 

-4 
-2 -1 0 1 2 

x (bohr) 

FIG. 1. Equipotential energy contour plot for the Makri and Miller double 
well potential. Contour levels are from - 6 to 10 kcal/mol with the differ- 
ence of 2 kcal/mol. 
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First, we discuss the case for hydrogen transfer in 
aqueous solution. In Fig. 2, we show the flux-flux correla- 
tion functions for temperatures T = 200, 300, and 400 K. 
Note that the flux-flux correlation functions fluctuate but 
also decay to zero at longer time. Such decay is found to be 
more rapid at higher temperature. This is due to the fact that 
there are larger solvent fluctuations at higher temperature, 
which causes the population to relax at a faster rate. Recall 
that the solvent fluctuation is modeled by stochastic dynam- 
ics in the present method. At lower temperatures, one may 
need to run longer simulations to ensure that the decaying 
correlation functions reach zero or a small number. How- 
ever, there is a limitation of the present method for calculat- 
ing the rate constants at low temperatures. That is, in calcu- 
lating the flux-flux correlation function, Cfl( t), we start the 
thermal wave packet at the saddle point and only monitor 
the flux through the dividing surface, which is perpendicular 
to the reaction coordinate and intersects it at the saddle 
point. At low temperatures, the starting thermal wave func- 
tion is quite delocalized and nearly split in halves over the 
barrier and further separated as time progresses (see Fig. 5 
in the previous study25). In such cases, the validity and accu- 
racy of the Ehrenfest force are questionable. However, since 
the flux-flux correlation functions decay over a relatively 
short time, especially at moderate to high temperatures, the 
errors have much less time to accumulate compared to wave- 
packet simulation methods, and even if the errors do accu- 
mulate, they only contribute to the tails of the correlation 
functions and thus have a small effect on the rate calcula- 
tions. The rate constants for this model Hamiltonian and the 
transmission coefficients, which are calculated by 

275- r(T) =-e -mv 
k,T s 

* C,(t)& , 
0 

(22) 

where A V is the barrier height, are shown in Table I. The 
viscosity of water is used in this case. Note that the transmis- 
sion coefficients increase rapidly as the temperature de- 

G 0.8 

z 
0 0.6 

2 
- 0.4 
=: 
;5 0.2 

- 200 K 
. . . . . . . . . . . . . . . . . . . . 300 K 

..-.-..-e., &,OK 

-0.2 1 - I I , I I I 
0 20 40 60 80 100 

time (fs) 

FIG. 2. Normalized flux-flux correlation functions plotted versus time at 
T= ZOO, 300, and 400 K for the model hydrogen atom transfer reaction in 
aqueous solution. 

TABLE I. Calculated transmission coefficients and rate constants (s- ’ ) for 
a model proton transfer reaction in aqueous solution. 

‘T’(K) kQ, 

200 243.39 3.04( 6)” 
220 83.46 6.83(6) 
240 37.01 1.46(7) 
260 20.18 3.04(7) 
300 9.26 1.20(S) 
350 5.46 5.36(8) 
4clo 4.01 1.83(9) 

*Power of ten in parentheses. 

creases. Tunneling is found to be very imporatant, even at 
room temperature, where it enhances the transfer rate by 
nearly an order of magnitude. The present results are also 
consistent with those of Rom, Moiseyev, and Lefebvre3’ 
(RML) which are based on a resonance energy formalism. 
This is in fact very encouraging since both methods involve 
completely different approaches. The approach of RML, 
based either on a basis set expansion method or a propaga- 
tion and matching method for calculating the resonance en- 
ergy levels, was found to be more accurate at low tempera- 
tures, T< 260 K, whereas the present method is applicable at 
moderate to high temperatures, T> 200 K. Furthermore, 
applications of the present method to macromolecules are 
technically simpler. 

We have also examined the behavior of the flux-flux 
correlation functions at different solvent friction constants. 
In Fig. 3, we plot the correlation functions calculated at 
T = 300 K for three different solvent viscosities, 7 = 0.01, 
0.89, and 100 cP. As the viscosity increases, the decay of the 
flux-flux correlation function becomes slower. In others 
words, the system relaxation time increases. This is in fact 
consistent with our intuitive understanding of chemical re- 
actions in solution. Consequently, the present method 
suffers the same limitation in calculating the rate constants 

1.2 

-0.2 I , I . I I . 
0 20 40 60 80 100 

time (fs) 

FIG. 3. Normalized flux-flux correlation functions plotted vs time at 
T= 300 K, for three different solvent viscosities, 7 = 0.01 (solid line), 0.89 
(water, dotted line), and 100 CP (dashed line). 
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of chemical reactions in solution with very high viscosities as 
in the case of low temperatures discussed above. It is inter- 
esting to note that the correlation functions for different fric- 
tion constants in Fig. 3 are nearly superimposed in the first 
20 fs of the reactive dynamics, and start to differentiate only 
after that time. A physical explanation for this observation is 
that the reaction, i.e., hydrogen transfer, takes place on a 
short time scale while the solvent motions require some time 
to respond to such changes in the system. This is an impor- 
tant result since it is one of the fundamental assumptions in 
the continuum theories of proton and electron transfer reac- 
tions. The calculated rate constants and transmission coeffi- 
cients plotted vs the solvent viscosity are shown in Fig. 4. At 
low friction, the rate constant is found to decrease as the 
friction decreases. This is in fact similar to Kramer’s effect3’ 
seen in the classical dynamics of reactions in solution. The 
transmission coefficients are also found to decrease as the 
friction decreases in the low friction region. However, both 
the rate constant and transmission coefficient approach a 
plateau region as the solvent friction increases up to the level 
being considered here. 

Since biological processes typically occur near room 
temperature and in aqueous solution, the present combined 

quantum-classical-stochastic dynamics method provides a 
useful and tractable tool for investigating the quantum me- 
chanical effects in such systems. We are now in process of 
applying the present method to more realistic systems of 
proton transfer reactions in solution, and eventually to pro- 
ton transfer in enzymes. 

V. CONCLUSION 

We have presented a new combined quantum-classical- 
stochastic dynamics method for studying the dynamics of 
chemical reactions in solution. The present method is an 
extension of the Wahnstriim, Carmeli, and Metiu combined 
quantum-classical method. It is based on the flux-flux corre- 
lation function formalism, for calculating the chemical reac- 
tion rate constant. We have tested the present method by 
applying it to a model Hamiltonian for the hydrogen atom 
transfer reaction in solution. We have examined the stability 
of the method with regard to temperature and the viscosity 
of the solvent. We found that the dynamical results are stable 
for moderate to high temperatures, n200 K in the present 
case, and when the viscosity of the solvent is not very large. 
Applications of the present method to a more realistic model 
of proton transfer reactions in proteins are in progress. 

L 
9 

Truong eta/: Combined quantum classical dynamics 8141 

ACKNOWLEDGMENTS 

1.8e+8 

We are grateful to Piotr Bala, Dr. John J. Tanner, and 
Professor Bogdan Lesyng for helpful discussions and com- 
ments on the manuscript. This work has been supported in 
part by the National Science Foundation, the Robert A. 
Welch Foundation, the Texas Advanced Research Program, 
and the National Center for Supercomputing Applications. 
T.N.T. is the recipient of a National Science Foundation 
Postdoctoral Fellowship. J.A.M. is the recipient of the G. H. 
Hitchings Award from the Burroughs Wellcome Fund. 

1.2e+8 - 

l&+8 - 

8.0e+7 I . I * I * 1 . 
0 20 40 60 80 100 

FIG. 4. Rate constants, kQ, (s-l), and transmission coefficients at room 
300 K plotted vs the solvent viscosity (cP). 

‘D. Neuhauser, R. S. Judson, R. L. Jaffe, M. Baer, and D. J. Kouri, Chem. 
Phys. Lett. 176, 546 ( 199 1) . 

‘5. Z. H. Zhang and W. H. Miller, Chem. Phys. Lett. 159, 130 (1989); J. 
Chem. Phys. 91, 1528 (1989). 

3M. Zhao, D. G. Truhlar, D. W. Schwenke, and D. J. Kouri, J. Phys. 
Chem. 94,2074 ( 1990). 

“5. M. Launay and M. LeDoumeuf, Chem. Phys. Lett. 169,473 (1990). 
5P. Bmmer and M. Shapiro, in Photodissociation and Photoionization, edit- 
ed by K. P. Lawley (Wiley, New York, 1985), p. 371. 

6A. Warshel, Biochemistry 20,3 167 ( 198 1) ; A. Warshel and S. Russell, J. 
Am. Chem.‘Soc. 108,6569 (1986); J.-K. Hwang, S. Creighton, G. King, 
D. Whitnew, and A. Warshel, J. Chem. Phys. 89,859 ( 1988); J. Aqvist 
and A. Warshel. Biochemistry 28,468O ( 1989). 

I  

‘A. Warshel, J. Phys. Chem. 86,2218 (1982). 
‘A. Warshel and Z. T. Chu, J. Chem. Phys. 93,4003 ( 1990). 
9D. Borgis and J. T. Hynes, in The Enzyme Catalysis Process, edited by A. 
Cooper, J. L. Houben, and L. C. Chien (Plenum, New York, 1989), p. 
293. 

“G. Wahnstriim, B. Carmeli, and H. Metiu, J. Chem. Phys. 88, 2478 
(1988). 

“K. Haug and H. Metiu, J. Chem. Phys. 94,325l (1991). 
‘*A. J. Cruz and B. Jackson, J. Chem. Phys. 94, 5715 ( 1991). 
13R. B. Gerber and R. Alimi, Chem. Phys. Lett. 173,393 (1990). 
14D. Neuhauser and R. S. Judson, Chem. Phys. Lett. 179,385 ( 1991). 
‘sD. Huber and E. Heller, J. Chem. Phys. 89,4752 (1988). 
‘“D. Borgis and J. T. Hynes, J. Chem. Phys. 94,3619 (1991). 
“A. Warshel and R. M. Weiss, J. Am. Chem. Sot. 102,6218 ( 1980). 

J. Chem. Phys., Vol. 96, No. 1 1 , 1 June 1992 



8142 Truong eta/.: Combined quantum classical dynamics 

“M. J. Field, P. A. Bash, and M. Karplus, J. Comp. Chem. 93,176l ( 1990). 
‘9. Yamamoto, J. Chem. Phys. 33,281 (1960). 
*%‘. H. Miller, J. Chem. Phys. 61,1823 (1974); W. H. Miller, S. Schwartz, 

and J. W. Tromp, ibid. 79,4889 (1983). 
“D. K. Hoffman, 0. A. Sharadeddin, R. S. Judson, and D. J. Kouri, J. 

Chem. Phys. 92,4167 (1990); 0. A. Sharadeddin, D. J. Kouri, R. S. Jud- 
son, and D. K. Hoffman, ibid. 93, 5580 (1990); R. S. Judson, D. B. 
McGarrah, 0. A. Sharafeddin, D. J. Kouri, and D. K. Hoffman, ibid. 94, 
3577 (1991); D. J. Kouri and D. K. Hoffman, Chem. Phys. Lett. 186,91 
(1991). 

*‘T. N. Truong, J. J. Tanner, P. Bala, J. A. McCammon, D. J. Kouri, B. 
Lesyng, and D. K. Hoffman, J. Chem. Phys. %,2077 (1992). 

23N. Makri and W. H. Miller, J. Chem. Phys. 86,145l (1987). 

24A. Briinger, C. L. Brooks III, and M. Karplus, Chem. Phys. Lett. 105,495 
(1984). 

*sG. Wahnstrijm and H. Metiu, J. Phys. Chem. 92, 3240 (1988). 
26W H Miller, comment to Professor B. Lesyng lecture at the NATO meet- . . 

ing June 13-19, 1991, Spain. 
“M. Berkowitz and J. A. McCammon, Chem. Phys. Lett. 90,215 ( 1982). 
“C. L. Brooks III and M. Karplus, J. Chem. Phys. 78,6312 (1983). 
*9P. Bala, B. Lesyng, T. N. Tmong, and J. A. McCammon, in The Role of 

Computationalhfodelsand Theories in Biotechnology, edited by J. Bert&n 
(Kluwer, City, in press). 

sON. Rom, N. Moiseyev, and R. Lefebvre, J. Chem. Phys. 95,3562 ( 1991). 
“H. A. Kramers, Physica 7,284 ( 1940). 

J. Chem. Phys., Vol. 96, No. 11,l June 1992 


